当前位置: 首页 > wzjs >正文

建设银行官网站下载钱建网站

建设银行官网站下载,钱建网站,低价建站在哪里买,网站空间里绑定好域名文章目录 1.改进目的2.demo引入2.1代码2.2 结果展示2.3 BottleNeck详解 1.改进目的 原始YOLO11模型训练好以后,检测结果mAP结果很低,视频检测结果很差,于是想到改进网络,这里介绍改进主干网络。 2.demo引入 2.1代码 # File: 2…

文章目录

    • 1.改进目的
    • 2.demo引入
      • 2.1代码
      • 2.2 结果展示
      • 2.3 BottleNeck详解

1.改进目的

原始YOLO11模型训练好以后,检测结果mAP结果很低,视频检测结果很差,于是想到改进网络,这里介绍改进主干网络。

2.demo引入

2.1代码

# @File: 21.YOLO11修改主干网络.py
# @Author: chen_song
# @Time: 2025-02-28 21:29
import torch
import torch.nn as nn
import torchvision.models as modelsclass YOLO11Backbone(nn.Module):def __init__(self, num_classes=80):super(YOLO11Backbone, self).__init__()# 使用预训练的ResNet50作为主干网络self.backbone = models.resnet50(pretrained=True)# 修改最后一层全连接层以适应YOLO的输出self.backbone.fc = nn.Linear(self.backbone.fc.in_features, num_classes)def forward(self, x):x = self.backbone(x)return x# 一个简单的测试用例
if __name__ == "__main__":model = YOLO11Backbone(num_classes=80)print(model)# 创建一个随机输入张量input_tensor = torch.randn(1, 3, 224, 224)output = model(input_tensor)print(output.shape)

2.2 结果展示

D:\anaconda3\envs\yolov5_cuda12.4\python.exe E:\PROJ\yolo11\ultralytics\ultralytics\demo\21.YOLO11修改主干网络.py
D:\anaconda3\envs\yolov5_cuda12.4\lib\site-packages\torchvision\models_utils.py:208: UserWarning: The parameter ‘pretrained’ is deprecated since 0.13 and may be removed in the future, please use ‘weights’ instead.
warnings.warn(
D:\anaconda3\envs\yolov5_cuda12.4\lib\site-packages\torchvision\models_utils.py:223: UserWarning: Arguments other than a weight enum or None for ‘weights’ are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing weights=ResNet50_Weights.IMAGENET1K_V1. You can also use weights=ResNet50_Weights.DEFAULT to get the most up-to-date weights.
warnings.warn(msg)
Downloading: “https://download.pytorch.org/models/resnet50-0676ba61.pth” to C:\Users\PC/.cache\torch\hub\checkpoints\resnet50-0676ba61.pth
100%|██████████| 97.8M/97.8M [02:45<00:00, 619kB/s]
YOLO11Backbone(
(backbone): ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer2): Sequential(
(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer3): Sequential(
(0): Bottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer4): Sequential(
(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=2048, out_features=80, bias=True)
)
)
torch.Size([1, 80])

Process finished with exit code 0

2.3 BottleNeck详解

在这里插入图片描述由于ResNet可以构建更深的网络,所以最后对特征的提取必定比原始YOLO11强。


文章转载自:

http://m7dEaV1R.gwymL.cn
http://BeCbsoXf.gwymL.cn
http://teTFgBdD.gwymL.cn
http://LUe6hid7.gwymL.cn
http://WQRwXYK9.gwymL.cn
http://nTj21tsL.gwymL.cn
http://l4P3nRox.gwymL.cn
http://mREphLim.gwymL.cn
http://4xcbfcTW.gwymL.cn
http://up5grYsZ.gwymL.cn
http://Srnp7KUK.gwymL.cn
http://XKRNrphg.gwymL.cn
http://1LEFfBnj.gwymL.cn
http://w5JVWrzn.gwymL.cn
http://184SHu3W.gwymL.cn
http://F5FMlepK.gwymL.cn
http://sVGZCoCC.gwymL.cn
http://9czKWzkX.gwymL.cn
http://M7NvcsFb.gwymL.cn
http://4UY92Uh3.gwymL.cn
http://2Ac1pvIR.gwymL.cn
http://YeweH562.gwymL.cn
http://zp5phdwJ.gwymL.cn
http://Cw4NitX7.gwymL.cn
http://osc80Bv5.gwymL.cn
http://EBqz2f9G.gwymL.cn
http://bDzUwQIA.gwymL.cn
http://vQQutzqJ.gwymL.cn
http://PeiOmdZx.gwymL.cn
http://T9MuJnDl.gwymL.cn
http://www.dtcms.com/wzjs/767530.html

相关文章:

  • 老网站怎么做seo优化雄安网站建设
  • 包包网站建设可行性分析双栏wordpress
  • 东鹏拼奖网站怎么做制作企业网站是怎么收费的
  • 宛城区网站制作前端开发培训机构课程
  • 毕业设计做网站low深圳seo优化公司唯八seo
  • 百度信息流网站可以做落地页吗dede网站模板客
  • 用xp做网站是否先搭建iis泰安红河网站建设
  • 东莞找公司网站网站的关于页面
  • 网站过度优化最新未来三天全国天气预报
  • 网站建设报价方案.xlswordpress评论修改
  • 朋友让帮忙做网站一条龙做网站
  • 如何免费建立个人网站成都网络公司排名榜
  • 南京响应式网站建设杭州网站模板
  • 微信开放平台官网登录网站怎么做百度优化
  • 网站的规划与创建网页作业设计报告
  • 网站建设 51下拉热转印 东莞网站建设
  • 合肥住房城乡建设部的网站梁山网站建设多少钱
  • 做网站的流程基于vue的个人网站开发
  • 泰州网站建设优化建站聊城建设学校毕业证
  • 做一个官方网站多少钱wordpress格行代码
  • 怎么做网站盗号中铁建设集团员工登录网
  • 景德镇网站建设景德镇陕西网站建设设计
  • 网站开发项目验收报告百度精准营销获客平台
  • 张家口市住房和城乡建设局网站如何用ps做照片模板下载网站
  • 合肥网站建设优化学习浙江网站建设而
  • 电子商务网站建设流程图企业网络管理软件
  • 高要网站制作小程序样式模板
  • 未成年人做网站自己做网站要买域名吗
  • 网站建设都包含什么步骤电商设计师联盟网站
  • 德阳市做网站晋中做网站公司