当前位置: 首页 > wzjs >正文

寻找专业网站建设天津市住房城乡建设部网站

寻找专业网站建设,天津市住房城乡建设部网站,网站开发是培训,注册公司代理费用多少钱1.状态表示是什么?简答理解是dp表里的值所表示的含义怎么来的?题目要求经验题目要求分析问题的过程中,发现重复子问题 2.状态转移方程dp[i]......细节问题:3.初始化控制填表的时候不越界4.填表顺序控制在填写当前状态的时候&#…
1.状态表示是什么?简答理解是dp表里的值所表示的含义怎么来的?题目要求经验+题目要求分析问题的过程中,发现重复子问题
2.状态转移方程dp[i]=......细节问题:3.初始化控制填表的时候不越界4.填表顺序控制在填写当前状态的时候,所需要的状态已经填写好了5.返回值题目要求+状态表示空间优化滚动数组
  1. 第 N 个泰波那契数
int tribonacci(int n)
{// 处理一些边界情况if(n < 3){if(n == 0) return 0;else return 1;}// 1.创建dp表vector<int> dp(n + 1);// 2.初始化dp[0] = 0, dp[1] = 1, dp[2] = 1;for(int i = 3; i <= n; ++i){// 3.填表dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];}// 4.返回值return dp[n];
}
// 空间优化版本
int tribonacci(int n)
{int arr[3] = { 0,1,1 };if(n < 3) return arr[n];int ret = 0;for(int i = 3; i <= n; ++i){ret = arr[0] + arr[1] + arr[2];arr[0] = arr[1], arr[1] = arr[2], arr[2] = ret;}return ret;
}
  1. 三步问题
状态表示:经验+题目要求:以i位置为结尾来入手dp[i]: 表示到达i位置,一共有多少种方法
状态转移方程:基于i位置状态,跨一步到i位置,来划分问题
int waysToStep(int n)
{if(1 == n) return 1;else if(2 == n) return 2;else if(3 == n) return 4;// 1.dp数组vector<int> dp(n + 1);// 2.初始化dp[1] = 1, dp[2] = 2, dp[3] = 4;for(int i = 4; i <= n; ++i){// 3.状态方程dp[i] = ((dp[i - 1] + dp[i - 2]) % 1000000007 + dp[i - 3]) % 1000000007;}// 4.返回值return dp[n];
}
  1. 使用最小花费爬楼梯
状态表示:经验+题目要求:以i位置为结尾来入手dp[i]: 表示i位置到下一步的最小花费
状态转移方程:dp[i] = min(dp[i-1], dp[i-2]) + cost[i]
int minCostClimbingStairs(vector<int>& cost)
{// 1.dp数组vector<int> dp(cost.size());// 2.初始化dp[0] = cost[0]; dp[1] = cost[1];for (int i = 2; i < dp.size(); ++i){// 3.状态转移方程dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];}// 4.返回值return min(dp[dp.size() - 1], dp[dp.size() - 2]);
}
  1. 解码方法
状态表示:经验+题目要求:以i位置为结尾来入手dp[i]: 表示以i位置为结尾时,解码方法的总数
状态转移方程:

在这里插入图片描述

int numDecodings(string s)
{// 0.边界情况if(s.size() < 2){if(s[0] == '0') return 0;else return 1;}// 1.dp数组vector<int> dp(s.size(), 0);// 2.初始化if (s[0] == '0') dp[0] = 0;else dp[0] = 1;if (s[0] != '0' && s[1] != '0') dp[1] += 1;if (10 <= stoi(s.substr(0, 2)) && stoi(s.substr(0, 2)) <= 26) dp[1] += 1;for(int i = 2; i < dp.size(); ++i){// 3.状态转移方程int num1 =0, num2 = 0;if(s[i] != '0') num1 = dp[i - 1];if(10 <= stoi(s.substr(i - 1, 2)) && stoi(s.substr(i - 1, 2)) <= 26) num2 = dp[i - 2];dp[i] = num1 + num2;}// 4.返回值return dp.back();
}
  1. 不同路径
状态表示:经验+题目要求:以[i,j]位置为结尾来入手dp[i][j]: 表示以[i,j]位置为finish时,从start出发的不同路径数
状态转移方程:dp[i][j] = dp[i-1][j] + dp[i][j-1]
int uniquePaths(int m, int n)
{// 1.dp数组vector<vector<int>> dp(m, vector<int>(n));// 2.初始化for (int i = 0; i < m; ++i){dp[i][0] = 1;}for (int i = 0; i < n; ++i){dp[0][i] = 1;}// 3.状态转移方程for (int row = 1; row < m; ++row){for (int col = 1; col < n; ++col){dp[row][col] = dp[row - 1][col] + dp[row][col - 1];}}// 4.返回值return dp.back().back();
}
  1. 不同路径 II
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid)
{// 1.dp数组int m = obstacleGrid.size();int n = obstacleGrid[0].size();vector<vector<int>> dp(m, vector<int>(n));// 2.初始化for(int i = 0; i < m; ++i){if(obstacleGrid[i][0] == 1)break;dp[i][0] = 1;}for(int i = 0; i < n; ++i){if(obstacleGrid[0][i] == 1)break;dp[0][i] = 1;}// 3.状态转移方程for(int row = 1; row < m; ++row){for(int col = 1; col < n; ++col){if(obstacleGrid[row][col] == 1)continue;dp[row][col] = dp[row - 1][col] + dp[row][col - 1];}}// 4.返回值return dp.back().back();
}
  1. 珠宝的最高价值
状态表示:经验+题目要求:以[i,j]位置为结尾来入手dp[i][j]: 表示到达[i,j]位置时所能得到的的最大价值
状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i][j-1]) + frame[i][j]
int jewelleryValue(vector<vector<int>>& frame)
{// 1.dp数组int row = frame.size();int col = frame[0].size();vector<vector<int>> dp(row, vector<int>(col));// 2.初始化dp[0][0] = frame[0][0];for(int i = 1; i < col; ++i){dp[0][i] = dp[0][i - 1] + frame[0][i];}for(int i = 1; i < row; ++i){dp[i][0] = dp[i - 1][0] + frame[i][0];}// 3.状态转移方程for(int i = 1; i < row; ++i){for(int j = 1; j < col; ++j){dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + frame[i][j];}}// 4.返回值return dp.back().back();
}
  1. 下降路径最小和
状态表示:经验+题目要求:以[i,j]位置为结尾来入手dp[i][j]: 表示到达[i,j]位置时所得到的最小下降路径和
状态转移方程:dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i-1][j+1]) + frame[i][j]
    int minFallingPathSum(vector<vector<int>>& matrix){// 1.dp数组int n = matrix.size();vector<vector<int>> dp(n, vector<int>(n));// 2.初始化for(int i = 0; i < n; ++i){dp[0][i] = matrix[0][i];}// 3.状态转移方程for(int i = 1; i < n; ++i){for(int j = 0; j < n; ++j){if(j == 0){dp[i][j] = min(dp[i - 1][j], dp[i - 1][j + 1]) + matrix[i][j];}else if(j == n - 1){dp[i][j] = min(dp[i - 1][j], dp[i - 1][j - 1]) + matrix[i][j];}else{dp[i][j] = min(min(dp[i - 1][j - 1], dp[i - 1][j]), dp[i - 1][j + 1]) + matrix[i][j];}}}// 4.返回值int min_sum = dp[n - 1][0];for(int i = 1; i < n; ++i){if(dp[n - 1][i] < min_sum) min_sum = dp[n - 1][i];}return min_sum;}
  1. 最小路径和
状态表示:经验+题目要求:以[i,j]位置为结尾来入手dp[i][j]: 表示到达[i,j]位置时所得到的最小路径和
状态转移方程:dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i][j]
int minPathSum(vector<vector<int>>& grid)
{// 1.dp数组int m = grid.size();int n = grid[0].size();vector<vector<int>> dp(m, vector<int>(n));// 2.初始化dp[0][0] = grid[0][0];for(int i = 1; i < m; ++i){dp[i][0] = dp[i - 1][0] + grid[i][0];}for(int i = 1; i < n; ++i){dp[0][i] = dp[0][i - 1] + grid[0][i];}// 3.状态转移方程for(int i = 1; i < m; ++i){for(int j = 1; j < n; ++j){dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];}}// 4.返回值return dp.back().back();
}
  1. 地下城游戏
状态表示:经验+题目要求:以[i,j]位置为起点来入手dp[i][j]: 表示从[i,j]位置出发,到达终点,所需的最低初始健康点数
状态转移方程:dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j];dp[i][j] = max(1, dp[i][j]); // 细节处理,健康点数至少为1才能存活
int calculateMinimumHP(vector<vector<int>>& dungeon)
{// 1.dp数组int m = dungeon.size();int n = dungeon[0].size();vector<vector<int>> dp(m, vector<int>(n));// 2.初始化if(dungeon[m - 1][n - 1] < 0) dp[m - 1][n - 1] = 1 - dungeon[m - 1][n - 1];else dp[m - 1][n - 1] = 1;for(int i = n - 2; i >= 0; --i){dp[m - 1][i] = dp[m - 1][i + 1] - dungeon[m - 1][i];dp[m - 1][i] = max(1, dp[m - 1][i]);}for(int i = m - 2; i >= 0; --i){dp[i][n - 1] = dp[i + 1][n - 1] - dungeon[i][n - 1];dp[i][n - 1] = max(1, dp[i][n - 1]);}// 3.状态转移方程for(int i = m - 2; i >= 0; --i){for(int j = n - 2; j >= 0; --j){dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j];dp[i][j] = max(1, dp[i][j]);}}// 4.返回值return dp[0][0];
}

文章转载自:

http://X37vlv6J.cndxL.cn
http://ah9ZzPZi.cndxL.cn
http://c7KfWs8u.cndxL.cn
http://KDfq2Q7I.cndxL.cn
http://4TOk1XDs.cndxL.cn
http://g4Qa7mDL.cndxL.cn
http://8fJnXSOx.cndxL.cn
http://xdo1POZS.cndxL.cn
http://PTN1M6cN.cndxL.cn
http://Q4K5IHiu.cndxL.cn
http://dVX1h440.cndxL.cn
http://BXia4XoI.cndxL.cn
http://9frJDKqV.cndxL.cn
http://DiTU0BAF.cndxL.cn
http://45wShov1.cndxL.cn
http://h4SAzLZ8.cndxL.cn
http://BDwA9nTZ.cndxL.cn
http://CIgPQRCt.cndxL.cn
http://AAjZKL93.cndxL.cn
http://8rw5F7Kt.cndxL.cn
http://ojnk0Oj0.cndxL.cn
http://bu7eJ28D.cndxL.cn
http://qUs7IxNu.cndxL.cn
http://1vtEatsv.cndxL.cn
http://hbqv7Nlo.cndxL.cn
http://LEQ5FAw7.cndxL.cn
http://wb51G2Xn.cndxL.cn
http://0p0vLOPg.cndxL.cn
http://Rpboj27S.cndxL.cn
http://RQrXVJfh.cndxL.cn
http://www.dtcms.com/wzjs/728544.html

相关文章:

  • 自己开的网站 可以做代销吗怎么让WORDPRESS首页显示菜单
  • 网站开发技术岗位职责云主机可以用来做什么
  • 河南做网站高手排名女生学网络营销这个专业好吗
  • 申报湖南创新型省份建设专项网站网站开发德菁
  • 广东省建设安全卡查询网站网站模块 带采集
  • 衣服网站设计做搜狗pc网站优化
  • 单页网站作用是什么网上推广公司
  • 企业网站建设58同城创意网页设计题库
  • 建设网站要学什么福州医疗网站建设
  • 网站外包 多少钱深圳小程序开发设计
  • 深圳做app网站的公司哪家好房县网站建设
  • 网站建站哪家公司好一点wordpress网页
  • 可以在线做试卷的网站微信免费开发平台
  • gl账号注册网站湖南响应式网站建设推荐
  • 东莞做网站哪家好传奇手游网页游戏平台
  • 帝国cms做中英文网站wordpress删除无分类文章
  • 简洁公司网站源码家如何网站
  • 企业网站开发主要职责芜湖市网站开发
  • 前端学习网站建设教程手机网站方案
  • 湖南新能源公司中企动力网站建设个人网站开发合同
  • 查找网站后台入口网站设计公司有哪些
  • 网站建设制作宝塔面板二手房中介网站建设
  • 免费的黄冈网站有哪些下载软件购物网站功能设计
  • 客栈网站建设代码广东省农业农村厅黎明
  • 网站按关键词显示广告图片国际网站开发客户
  • 网站备案过户node.js做的网站
  • 重庆市建设领域农民工工资专户网站自己做网站给自己淘宝引流
  • 三沙网站建设wordpress设置摘要还是显示全文
  • 网站建设 设计 优化 维护河北网络营销推广seo
  • 做最好的色书网站网站如何做吸引人的项目