当前位置: 首页 > wzjs >正文

海阳建设局网站青岛网站优化公司

海阳建设局网站,青岛网站优化公司,如何查询公司做没做网站,网站快照描述python绘制年平均海表温度、盐度、ph图 文章目录 python绘制年平均海表温度、盐度、ph分布图前言一、数据准备二、代码编写2.1. python绘制年平均海表温度(主要)2.2. python绘制年平均海表盐度(选看)2.3. python绘制年平均海表ph&…

python绘制年平均海表温度、盐度、ph图

文章目录

  • python绘制年平均海表温度、盐度、ph分布图
    • 前言
    • 一、数据准备
    • 二、代码编写
      • 2.1. python绘制年平均海表温度(主要)
      • 2.2. python绘制年平均海表盐度(选看)
      • 2.3. python绘制年平均海表ph(选看)
    • 总结


python绘制年平均海表温度、盐度、ph分布图

所属目录:紫菜创建时间:2025/2/18更新时间:2025/2/19URL:https://blog.csdn.net/2301_78630677/article/details/145716784

前言

本文主要使用python绘制年平均海表温度、盐度、ph分布图,所用数据来源于Bio-ORACLE
参考文章:
Python绘制海表温度
【python海洋专题十二】年平均的南海海表面温度图

所用到的中国地图shp文件:
链接:https://pan.baidu.com/s/1q9hitI11CCYDWvBTWbAevg
提取码:9ju8

一、数据准备

Bio-ORACLE官网 下载所需的 2010-2020平均海表Ocean temperature、Salinity、pH数据
点击前往下载地址
在这里插入图片描述

下载下来的环境数据为.nc文件,也就是NetCDF格式。

‌NetCDF(Network Common Data Form)格式是一种用于存储和共享科学数据的标准格式,广泛应用于气象学、海洋学、地球科学等领域‌。.nc文件是NetCDF文件的扩展名,主要用于存储大型科学和工程数据集。

.nc文件的基本结构和特点
‌自描述性‌:.nc文件包含关于数据集的元数据,这些元数据描述了数据集的结构和内容,使得用户无需其他文档即可理解数据。
‌可移植性‌:.nc文件是二进制格式,能够在不同的平台上无缝迁移和使用。
‌多维数组结构‌:.nc文件通常包含多个维度,如时间、经度和纬度,适用于存储复杂的多维数据集。

补充:
所用的Bio-ORACLE环境数据合集(有需要就下载吧)
Bio-ORACLE数据分享[decade 2010-2020] [Surface layers]

二、代码编写

接下来主要讲述 python绘制年平均海表温度的代码,另外两个类似,只需要稍加修改

2.1. python绘制年平均海表温度(主要)

该代码用于绘制中国周边海域的海表温度(SST)分布图,并添加了省份边界、等温线和网格线等细节,最后保存pdf文件

import xarray as xr  
import matplotlib.pyplot as plt  
import cartopy.crs as ccrs  
import cartopy.feature as cfeature  
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter  # 导入经纬度格式器 
import numpy as np
from cartopy.io.shapereader import Reader
from cartopy.feature import ShapelyFeature
# 加载NetCDF格式的SST数据(替换为你的SST数据文件路径)  
ds = xr.open_dataset(r"D:\oceandata\Bio-ORACLE\Temperature [mean].nc")  # 假设你的SST数据在该文件中  print(ds.variables) #打印SST数据的所有变量名及其相关信息,通过查看这些信息,你可以确定要使用哪个变量进行绘图和分析# 选择SST变量(替换为你的SST变量名)  
sst = ds['thetao_mean']# 计算时间轴上的平均值(如果时间是一个维度)  
sst_mean = sst.mean(dim='time')  # 假设'time'是时间维度  # 创建一个地图并设置投影  
fig = plt.figure(figsize=(10, 5))  
ax = fig.add_subplot(1, 1, 1, projection=ccrs.PlateCarree())  # 添加陆地和海洋特征  
ax.add_feature(cfeature.LAND, color='lightgray')  
ax.add_feature(cfeature.OCEAN, color='w', edgecolor='lightgray')  
ax.coastlines(color='black')  
# 添加省份边界
shapefile = r"C:\Users\www\Desktop\china_map\china_SHP\省界_Project.shp"  # 替换为你的Shapefile文件路径
china_provinces = ShapelyFeature(Reader(shapefile).geometries(), ccrs.PlateCarree(), edgecolor='black', facecolor='none')
ax.add_feature(china_provinces)# 绘制SST平均值数据  
sst_plot = sst_mean.plot.contourf(ax=ax, transform=ccrs.PlateCarree(), cmap='coolwarm', levels=25, extend='both', add_colorbar=False,vmin=5, vmax=30)  
# levels参数可以调整等值线的数量  (具体来说,levels=25 表示将数据范围分成25个间隔,并绘制出相应的等值线。这些等值线将数据集的值范围(在此例中是5到30°C)平均分成25个部分,每个部分的上限和下限定义了一条等值线。)# 添加颜色条  
cbar = fig.colorbar(sst_plot, drawedges=True, ax=ax, location='right', shrink=0.95, pad=0.08, spacing='uniform', label='Average Sea Surface Temperature (°C)')  
cbar.ax.tick_params(labelsize=10)  # 设置色标尺标签大小 # 设置颜色条的刻度标签
cbar.set_ticks(np.arange(5, 31, 5))# 添加等温线  
sst_contour = sst_mean.plot.contour(ax=ax, transform=ccrs.PlateCarree(), colors='gray', levels=130,linewidths=0.5)   # levels参数可以调整等温线的数量  # 为等值线添加标签  
plt.clabel(sst_contour, inline=True, fontsize=10, fmt='%1.1f') # 设置地图的经纬度范围(可选)  
ax.set_extent([110, 135, 20, 40], crs=ccrs.PlateCarree())  # 添加网格线  
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, xlocs=np.arange(110, 135, 5), ylocs=np.arange(20, 40, 5),linewidth=0.5, linestyle='--', color='k', alpha=0.8)  # 添加网格线
gl.xlabels_top = False  
gl.ylabels_right = False  
gl.xformatter = LongitudeFormatter()  # 使用默认的经度格式器  
gl.yformatter = LatitudeFormatter()   # 使用默认的纬度格式器  
gl.xlabel_style = {'size': 10, 'color': 'black'}  
gl.ylabel_style = {'size': 10, 'color': 'black'}  
print("Map created successfully!")
# 保存地图为PDF文件
plt.savefig('scs_sst_1.pdf', dpi=600, bbox_inches='tight', pad_inches=0.1)
# 显示地图  
plt.show()

代码大概包括以下流程:

  1. 加载数据:读取 NetCDF 文件并提取 SST 变量。
  2. 数据处理:对时间维度取平均。
  3. 创建地图:设置投影、添加陆地和海洋特征、绘制省份边界。
  4. 绘制 SST 数据:绘制填充等温线和等温线,添加颜色条和标签。
  5. 设置地图范围与网格线:调整地图范围,添加网格线并格式化标签。
  6. 保存与显示:保存地图为 PDF 文件并显示。

print(ds.variables) #打印SST数据的所有变量名及其相关信息,通过查看这些信息,你可以确定要使用哪个变量进行绘图和分析
例如该SST数据包括四个变量:time、latitude、longitude、thetao_mean, 其中thetao_mean就是SST变量名。

在这里插入图片描述

结果显示
在这里插入图片描述

2.2. python绘制年平均海表盐度(选看)

以下代码与年平均海表温度的代码类似(一些注释信息就没改过来了,知道意思即可)


import xarray as xr  
import matplotlib.pyplot as plt  
import cartopy.crs as ccrs  
import cartopy.feature as cfeature  
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter  # 导入经纬度格式器 
import numpy as np
from cartopy.io.shapereader import Reader
from cartopy.feature import ShapelyFeature
# 加载NetCDF格式的SST数据(替换为你的数据文件路径)  ds = xr.open_dataset(r"D:\oceandata\so_baseline_2000_2019_depthsurf_49ed_5fc4_602c_U1739344920620_yandu.nc")  # 假设你的SST数据在该文件中  print(ds.variables)
# 选择SST变量(替换为你的SST变量名)  
sst = ds['so_mean']# 计算时间轴上的平均值(如果时间是一个维度)  
sst_mean = sst.mean(dim='time')  # 假设'time'是时间维度  # 创建一个地图并设置投影  
fig = plt.figure(figsize=(10, 5))  
ax = fig.add_subplot(1, 1, 1, projection=ccrs.PlateCarree())  # 添加陆地和海洋特征  
ax.add_feature(cfeature.LAND, color='lightgray')  
ax.add_feature(cfeature.OCEAN, color='w', edgecolor='lightgray')  
ax.coastlines(color='black')  
# 添加省份边界
shapefile = r"C:\Users\www\Desktop\a5bc0-main\china_SHP\省界_Project.shp"  # 替换为你的Shapefile文件路径
china_provinces = ShapelyFeature(Reader(shapefile).geometries(), ccrs.PlateCarree(), edgecolor='black', facecolor='none')
ax.add_feature(china_provinces)# 绘制SST平均值数据  
sst_plot = sst_mean.plot.contourf(ax=ax, transform=ccrs.PlateCarree(), cmap='coolwarm', levels=15, extend='both', add_colorbar=False,vmin=20, vmax=35)  # levels参数可以调整等温线的数量  # 添加颜色条  
cbar = fig.colorbar(sst_plot, drawedges=True, ax=ax, location='right', shrink=0.95, pad=0.08, spacing='uniform', label='Average Sea Surface Salinity (psu)')  
cbar.ax.tick_params(labelsize=10)  # 设置色标尺标签大小 # 设置颜色条的刻度标签
cbar.set_ticks(np.arange(20, 36, 3))# 添加等温线  
sst_contour = sst_mean.plot.contour(ax=ax, transform=ccrs.PlateCarree(), colors='gray', levels=50,linewidths=0.5)  # 为等值线添加标签  
plt.clabel(sst_contour, inline=True, fontsize=10, fmt='%1.1f') # 设置地图的经纬度范围(可选)  
ax.set_extent([110, 135, 20, 40], crs=ccrs.PlateCarree())  # 添加网格线  
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, xlocs=np.arange(110, 135, 5), ylocs=np.arange(20, 40, 5),linewidth=0.5, linestyle='--', color='k', alpha=0.8)  # 添加网格线
gl.xlabels_top = False  
gl.ylabels_right = False  
gl.xformatter = LongitudeFormatter()  # 使用默认的经度格式器  
gl.yformatter = LatitudeFormatter()   # 使用默认的纬度格式器  
gl.xlabel_style = {'size': 10, 'color': 'black'}  
gl.ylabel_style = {'size': 10, 'color': 'black'}  
print("Map created successfully!")# 保存地图为PDF文件
plt.savefig('scs_yandu_1.pdf', dpi=600, bbox_inches='tight', pad_inches=0.1)
# 显示地图  
plt.show()

在这里插入图片描述

2.3. python绘制年平均海表ph(选看)

以下代码与年平均海表温度的代码类似,只不过因为ph的值较小,我们可以先计算一下数据中的最大值与最小值,方便确定ph大小


import xarray as xr  
import matplotlib.pyplot as plt  
import cartopy.crs as ccrs  
import cartopy.feature as cfeature  
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter  # 导入经纬度格式器 
import numpy as np
from cartopy.io.shapereader import Reader
from cartopy.feature import ShapelyFeature
# 加载NetCDF格式的SST数据(替换为你的SST数据文件路径)  ds = xr.open_dataset(r"D:\oceandata\ph_baseline_2000_2018_depthsurf_f606_6dc8_6180_U1739344995788_ph.nc")  # 假设你的SST数据在'sst.nc'文件中  # 选择pH变量(替换为你的pH变量名)  
ph = ds['ph_mean']# 计算pH数据的最高和最低值
ph_max = ph.max(dim=['time', 'latitude', 'longitude'])
ph_min = ph.min(dim=['time', 'latitude', 'longitude'])print("Maximum pH value:", ph_max)
print("Minimum pH value:", ph_min)print(ds.variables)
# 选择SST变量(替换为你的SST变量名)  
sst = ds['ph_mean']# 计算时间轴上的平均值(如果时间是一个维度)  
sst_mean = sst.mean(dim='time')  # 假设'time'是时间维度  # 创建一个地图并设置投影  
fig = plt.figure(figsize=(10, 5))  
ax = fig.add_subplot(1, 1, 1, projection=ccrs.PlateCarree())  # 添加陆地和海洋特征  
ax.add_feature(cfeature.LAND, color='lightgray')  
ax.add_feature(cfeature.OCEAN, color='w', edgecolor='lightgray')  
ax.coastlines(color='black')  
# 添加省份边界
shapefile = r"C:\Users\王浩天\Desktop\a5bc0-main\china_SHP\省界_Project.shp"  # 替换为你的Shapefile文件路径
china_provinces = ShapelyFeature(Reader(shapefile).geometries(), ccrs.PlateCarree(), edgecolor='black', facecolor='none')
ax.add_feature(china_provinces)# 绘制SST平均值数据  
sst_plot = sst_mean.plot.contourf(ax=ax, transform=ccrs.PlateCarree(), cmap='coolwarm', levels=15, extend='both', add_colorbar=False,vmin=8, vmax=8.2)  # levels参数可以调整等温线的数量  # 添加颜色条  
cbar = fig.colorbar(sst_plot, drawedges=True, ax=ax, location='right', shrink=0.95, pad=0.08, spacing='uniform', label='Average Sea Surface pH')  
cbar.ax.tick_params(labelsize=10)  # 设置色标尺标签大小 # 设置颜色条的刻度标签
cbar.set_ticks(np.arange(8, 8.25, 0.05))# 添加等温线  
sst_contour = sst_mean.plot.contour(ax=ax, transform=ccrs.PlateCarree(), colors='gray', levels=200,linewidths=0.5)  # 为等值线添加标签  
plt.clabel(sst_contour, inline=True, fontsize=10, fmt='%1.3f')  #保留小数点后三位# 设置地图的经纬度范围(可选)  
ax.set_extent([110, 135, 20, 40], crs=ccrs.PlateCarree())  # 添加网格线  
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, xlocs=np.arange(110, 135, 5), ylocs=np.arange(20, 40, 5),linewidth=0.5, linestyle='--', color='k', alpha=0.8)  # 添加网格线
gl.xlabels_top = False  
gl.ylabels_right = False  
gl.xformatter = LongitudeFormatter()  # 使用默认的经度格式器  
gl.yformatter = LatitudeFormatter()   # 使用默认的纬度格式器  
gl.xlabel_style = {'size': 10, 'color': 'black'}  
gl.ylabel_style = {'size': 10, 'color': 'black'}  
print("Map created successfully!")
# 保存地图为PDF文件
plt.savefig('scs_ph_1.pdf', dpi=600, bbox_inches='tight', pad_inches=0.1)
# 显示地图  
plt.show()

在这里插入图片描述

总结

主要是以绘制年平均海表温度分布图为例,其余环境数据也类似。

2025/2/19


文章转载自:

http://SjwLqtvz.sfswj.cn
http://ARCbNh96.sfswj.cn
http://UFHf2k8j.sfswj.cn
http://Llb2ARgu.sfswj.cn
http://hanF4HzZ.sfswj.cn
http://5RS3qjwC.sfswj.cn
http://Hnh601aD.sfswj.cn
http://Rx2y9co8.sfswj.cn
http://Avm4WmFE.sfswj.cn
http://KRuDSnrp.sfswj.cn
http://dbhEJRSo.sfswj.cn
http://YuX4Ce0W.sfswj.cn
http://XHLirHm2.sfswj.cn
http://k21je769.sfswj.cn
http://D9WNyarQ.sfswj.cn
http://m6Nc8Kda.sfswj.cn
http://vebqjGKK.sfswj.cn
http://e2kaR232.sfswj.cn
http://9bLn39ig.sfswj.cn
http://VrCOzFM2.sfswj.cn
http://bu9kyNWe.sfswj.cn
http://h2RvJ423.sfswj.cn
http://VS68fzWH.sfswj.cn
http://ZKFKQ60g.sfswj.cn
http://jb2SiMfr.sfswj.cn
http://A44ozT7Z.sfswj.cn
http://1gM9F9iN.sfswj.cn
http://mFfRHBiQ.sfswj.cn
http://OHud4dKA.sfswj.cn
http://3WxXUnKz.sfswj.cn
http://www.dtcms.com/wzjs/716222.html

相关文章:

  • 购物网站二级页面模板软件开发培训学校哪的好
  • 唐山哪里建设网站泸西县建设小学网站
  • ps临摹网站wordpress 自建cdn
  • 临沂做网站推广的公司中海外城市建设有限公司网站
  • 一个微信网站多少钱建设网站需要购买虚拟主机吗
  • 网站发布与推广鞍山建立公司网站的步骤
  • 网页设计的网站推荐魔方 网站建设 有限公司
  • 网站开发的乌兰察布市建设银行网站
  • 外贸网站源码怎么建汽车网站营销
  • 怎么做打鱼网站外贸功能网站建设
  • 深圳手机网站建设合肥百度搜索优化
  • 游戏网站开发计划书郑州平面设计培训速成班
  • 温州市手机网站制作哪家好做网站还是app省钱
  • 商城网站建设哪家公司好wordpress 模板 教程
  • 网站建站平台 开源世界足球排名前100名
  • 国外有没有网站是做潘多拉的wordpress 弹窗登陆
  • 网站运营托管方案设计网址有哪些
  • 如何给网站做优化代码微网站建设找哪家公司
  • 福建住房与城乡建设厅网站网站开发专业就业好不好
  • 网站建设最好公司浅笑云主机
  • 单机怎么做网站设计师分六个级别
  • 北京哪个网站建设最好上海网页制作模板
  • 黄冈网站推广都有哪些渠道做门名片设计网站
  • 网站设计需求方案山东网站建设服务
  • 网站设计思路方案百度免费推广有哪些方式
  • 兼职招聘网站警惕网站免费看手机
  • 招商网站建设大概多少钱荥阳做网站推广
  • 北京装修公司排名推荐北京seo多少钱
  • 从网络安全角度考量_写出建设一个大型电影网站规划方案阿里云域名查询系统
  • 网站服务器返回状态码404西安公司排行榜