当前位置: 首页 > wzjs >正文

公司网站建设实施方案手机上如何制作自己的网站

公司网站建设实施方案,手机上如何制作自己的网站,上海注册公司注册资金,超超大型网站独立服务器低阶张量操作是所有现代机器学习的底层架构,可以转化为TensorFlow API。 张量,包括存储神经网络状态的特殊张量(变量)​。 张量运算,比如加法、relu、matmul。 反向传播,一种计算数学表达式梯度的方法&…

低阶张量操作是所有现代机器学习的底层架构,可以转化为TensorFlow API。

张量,包括存储神经网络状态的特殊张量(变量)​。
张量运算,比如加法、relu、matmul。
反向传播,一种计算数学表达式梯度的方法(在TensorFlow中通过GradientTape对象来实现)​。

然后是高阶深度学习概念。这可以转化为Keras API。

,多层可以构成模型。
损失函数,它定义了用于学习的反馈信号。(必须是可微的)
优化器,它决定学习过程如何进行。
评估模型性能的指标,比如精度。
训练循环,执行小批量梯度随机下降。

常数张量和变量

要使用TensorFlow,我们需要用到一些张量。创建张量需要给定初始值。例如,可以创建全1张量或全0张量(见代码清单3-1)​,也可以从随机分布中取值来创建张量(见代码清单3-2)​。

代码清单3-1 全1张量或全0张量

import tensorflow as tf
x = tf.ones(shape=(2, 1))
#←----等同于np.ones(shape=(2, 1))
print(x)
x = tf.zeros(shape=(2, 1))
#←----等同于np.zeros(shape=(2, 1))
print(x)

代码清单3-2 随机张量

x = tf.random.normal(shape=(3, 1), mean=0., stddev=1.)
#←----从均值为0、标准差为1的正态分布中抽取的随机张量,等同于np.random.normal(size=(3, 1), loc=0., scale=1.)
# mean的中文含义就是均值print(x)x = tf.random.uniform(shape=(3, 1), minval=0., maxval=1.)
#←----从0和1之间的均匀分布中抽取的随机张量,等同于np.random.uniform(size=(3, 1), low=0., high=1.)
print(x)

NumPy数组和TensorFlow张量之间的一个重要区别是,TensorFlow张量是不可赋值的,它是常量。举例来说,在NumPy中,你可以执行以下操作,如代码清单3-3所示。

代码清单3-3 NumPy数组是可赋值的

import numpy as np
x = np.ones(shape=(2, 2))
x[0, 0] = 0.

如果在TensorFlow中执行同样的操作(如代码清单3-4所示)​,那么程序会报错:EagerTensor object does not support item assignment(EagerTensor对象不支持对元素进行赋值)​。

代码清单3-4 TensorFlow张量是不可赋值的

x = tf.ones(shape=(2, 2))----程序会报错,因为张量是不可赋值的
x[0, 0] = 0.

要训练模型,我们需要更新其状态,而模型状态是一组张量。如果张量不可赋值,那么我们该怎么做呢?这时就需要用到变量(variable)​。tf.Variable是一个类,其作用是管理TensorFlow中的可变状态。要创建一个变量,你需要为其提供初始值,比如随机张量,如代码清单3-5所示。

>>> v = tf.Variable(initial_value=tf.random.normal(shape=(3, 1)))
>>> print(v)
array([[-0.75133973],[-0.4872893 ],[ 1.6626885 ]], dtype=float32)

变量的状态可以通过其assign方法进行修改,如代码清单3-6所示。

代码清单3-6 为TensorFlow变量赋值

>>> v.assign(tf.ones((3, 1)))
array([[1.],[1.],[1.]], dtype=float32)

这种方法也适用于变量的子集,如代码清单3-7所示。

代码清单3-7 为TensorFlow变量的子集赋值

>>> v[0, 0].assign(3.)
array([[3.],[1.],[1.]], dtype=float32)

与此类似,assign_add()和assign_sub()分别等同于+=和-=的效果,如代码清单3-8所示。

代码清单3-8 使用assign_add()

>>> v.assign_add(tf.ones((3, 1)))
array([[2.],[2.],[2.]], dtype=float32)

就像NumPy一样,TensorFlow提供了许多张量运算来表达数学公式。我们来看几个例子,如代码清单3-9所示。

代码清单3-9 一些基本的数学运算

a = tf.ones((2, 2))
b = tf.square(a)----求平方
c = tf.sqrt(a)----求平方根
d = b + c  ←----两个张量(逐元素)相加
e = tf.matmul(a, b)----计算两个张量的积(详见第2章)
e *= d  ←----两个张量(逐元素)相乘

重要的是,代码清单3-9中的每一个运算都是即刻执行的:任何时候都可以打印出当前结果,就像在NumPy中一样。我们称这种情况为急切执行(eager execution)​。

本文可运行全部代码集合,大家可以直接在装了tensorflow的python3环境下运行。

import tensorflow as tf
x = tf.ones(shape=(2, 1))
#←----等同于np.ones(shape=(2, 1))
print(x)
x = tf.zeros(shape=(2, 1))
#←----等同于np.zeros(shape=(2, 1))
print(x)x = tf.random.normal(shape=(3, 1), mean=0., stddev=1.)
#←----从均值为0、标准差为1的正态分布中抽取的随机张量,等同于np.random.normal(size=(3, 1), loc=0., scale=1.)
# mean的中文含义就是均值print(x)x = tf.random.uniform(shape=(3, 1), minval=0., maxval=1.)
#←----从0和1之间的均匀分布中抽取的随机张量,等同于np.random.uniform(size=(3, 1), low=0., high=1.)
print(x)import numpy as np
x = np.ones(shape=(2, 2))
x[0, 0] = 0.print(x)v = tf.Variable(initial_value=tf.random.normal(shape=(3, 1)))
print(v)v.assign(tf.ones((3, 1)))
print(v)v[0, 0].assign(3.)
print(v)v.assign_add(tf.ones((3, 1)))
print(v)
http://www.dtcms.com/wzjs/71124.html

相关文章:

  • 小游戏网站审核怎么做今日热搜榜
  • 怎么增加网站百度收录aso推广
  • 网站制作是不是要一个后台太原seo排名收费
  • 如何建设网站兴田德润可以吗抖音指数查询
  • 网站建设心得小结网络营销外包推广价格
  • wordpress4.0seo单页面优化
  • 宣传网站模板百度爱采购官网
  • 东莞石龙网站建设爱站网站长工具
  • 网站建设电话销售术语如何提升网站搜索排名
  • 阿里巴巴的网站怎么做的百度账号购买1元40个
  • 个人备案做运营网站网店代运营合同
  • 做网站 提交源码 论坛腾讯企业qq
  • 网站怎么申请淮安网站seo
  • 网站建设不挣钱vue seo优化
  • 北京外贸营销网站建设费用百家号排名
  • 怎么查看网站是哪家公司做的线上营销策略
  • 海南哪家公司做网站做的好西安疫情最新情况
  • 咸宁响应式网站建设价格营销型网站一般有哪些内容
  • 照片管理网站模板搜索引擎优化面对哪些困境
  • 常州北京网站建设关键词seo报价
  • 怎样做阿里巴巴网站的店招东莞seo优化推广
  • 国外做软件界面的设计网站qq代刷网站推广免费
  • 建站公司推荐首推万维科技青山seo排名公司
  • 可以做网络推广的网站广州推动优化防控措施落地
  • 网站维护运营个人网站该怎么打广告
  • 网站设计有限公司网络营销计划包括哪七个步骤
  • 淘宝里面的网站怎么做的百度云网盘网页版登录
  • 怎么自己建立一个网站网站优化外包多少钱
  • 做网站开发背景互联网广告公司排名前十
  • 网站建设的技术方案模板下载seo网络推广课程