加盟投资好项目西安网站优化
文章目录
- 1、前言
- 2、使用gpio-keys驱动
- 2.1、dts配置
- 2.2、识别原理
- 2.3、应用层驱动实现
- 2.4、编译测试
- 3、使用rotary-encoder驱动
- 3.1、dts配置
- 3.2、app测试程序编写
- 3.3、编译测试
- 4、总结
1、前言
本来是没有这篇文章的。最近在rk3576下调试ec11旋转编码器时,一直没有效果,或者一开始可以,之后又不行了。首先我使用的ec11是基于AB相输出的,其次rk3576连接到AB相的引脚不是原生IO脚,是通过xl9535 gpio扩展芯片连接的,关于bug的调试可以参考《Linux下xl9535 gpio扩展芯片bug调试》。本文介绍基于原生IO引脚的ec11旋转编码器调试,总共有两种方式,一种是基于gpio-keys驱动,一种基于rotary-encoder驱动,这两个驱动都是内核自带的。
2、使用gpio-keys驱动
gpio-keys是按键驱动。所以使用此种方法只是把A相和B相的输出分别当作一个按键,并注册进input子系统。最终是在应用层实现驱动。
2.1、dts配置
# ec11的按键
Rotary_SW {compatible = "gpio-keys";status = "okay";#address-cells = <1>;#size-cells = <0>;rotary_sw {label = "rotary_sw";linux,code=<KEY_0>;debounce-interval = <5>;gpios = <&gpio3 6 GPIO_ACTIVE_LOW>;interrupt-parent = <&gpio3>;interrupts = <6 IRQ_TYPE_LEVEL_LOW>;};
};Rotary_A {compatible = "gpio-keys";status = "okay";#address-cells = <1>;#size-cells = <0>;rotary_a {label = "rotary_a";linux,code=<250>;debounce-interval = <1>;gpios = <&gpio4 RK_PA6 GPIO_ACTIVE_HIGH>;interrupt-parent = <&gpio4>;interrupts = <6 IRQ_TYPE_EDGE_RISING>;};
};Rotary_B {compatible = "gpio-keys";status = "okay";#address-cells = <1>;#size-cells = <0>;rotary_b {label = "rotary_b";linux,code=<251>;debounce-interval = <1>;gpios = <&gpio4 RK_PA4 GPIO_ACTIVE_HIGH>;interrupt-parent = <&gpio4>;interrupts = <4 IRQ_TYPE_EDGE_RISING>;};
};
属性含义可参考:https://www.kernel.org/doc/Documentation/devicetree/bindings/input/gpio-keys.txt
2.2、识别原理
A相和B相输出的信号存在90度的相位差。当编码器顺时针旋转时,A相的信号会比B相的信号超前90度;而当编码器逆时针旋转时,A相的信号会比B相的信号滞后90度。
当检测到A相从低电平变为高电平时,如果此时B相为低电平,则编码器顺时针旋转:
当检测到B相从低电平变为高电平时,如果此时A相为低电平,则编码器逆时针旋转:
2.3、应用层驱动实现
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <linux/input.h>
#include <pthread.h>
#include <errno.h>
#include <signal.h>#define EC11_SW_EVENT "/dev/input/event7"
#define EC11_A_EVENT "/dev/input/event6"
#define EC11_B_EVENT "/dev/input/event5" // 线程ID
pthread_t ec11_sw_obj, ec11_a_obj, ec11_b_obj; // 文件描述符
int ec11_sw_fd, ec11_a_fd, ec11_b_fd;
int count = 0; // 累计步数// 编码器状态变量
int ec11_sw_value = 0;
int ec11_a_value = 1;
int ec11_b_value = 1;
int ec11_direction = 0; // 0:不动作 1:顺时针旋转 2:逆时针旋转 3:按键按下顺时针旋转 4:按键按下逆时针旋转 5:按键按下
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; void sigint_handler(int sig_num)
{ pthread_cancel(ec11_sw_obj);pthread_cancel(ec11_a_obj);pthread_cancel(ec11_b_obj);close(ec11_sw_fd); close(ec11_a_fd);close(ec11_a_fd);pthread_join(ec11_sw_obj, NULL);pthread_join(ec11_a_obj, NULL);pthread_join(ec11_b_obj, NULL);printf("all thread exit\n");exit(0);
}void *ec11_scan_thread(void *arg)
{ int fd = *(int*)arg; struct input_event ie; while (1) { if (read(fd, &ie, sizeof(struct input_event)) == sizeof(struct input_event)) { if (ie.type == EV_KEY) { pthread_mutex_lock(&lock); // 处理按键事件if (fd == ec11_sw_fd && ie.code == 4) { ec11_sw_value = ie.value; if (ec11_sw_value == 1 && ec11_a_value == 1 && ec11_b_value == 1) // 按键按下ec11_direction = 5; } // 处理A相事件else if (fd == ec11_a_fd && ie.code == 250) { if (ie.value == 0 && ec11_b_value == 1) // 顺时针旋转{ ec11_a_value = 0; ec11_direction = (ec11_sw_value == 1) ? 3 : 1; // 判断按键状态 } else if (ie.value == 1) ec11_a_value = 1; } // 处理B相事件else if (fd == ec11_b_fd && ie.code == 251) { if (ie.value == 0 && ec11_a_value == 1) // 逆时针旋转{ ec11_b_value = 0; ec11_direction = (ec11_sw_value == 1) ? 4 : 2; // 判断按键状态 } else if (ie.value == 1) ec11_b_value = 1; } pthread_mutex_unlock(&lock); } } }
} int main(int argc, char **argv)
{ int ret;ec11_sw_fd = open(EC11_SW_EVENT, O_RDONLY); ec11_a_fd = open(EC11_A_EVENT, O_RDONLY); ec11_b_fd = open(EC11_B_EVENT, O_RDONLY); if (ec11_sw_fd < 0 || ec11_a_fd < 0 || ec11_b_fd < 0) { printf("Failed to open input device\n"); return -1; }pthread_create(&ec11_sw_obj, NULL, ec11_scan_thread, &ec11_sw_fd); pthread_create(&ec11_a_obj, NULL, ec11_scan_thread, &ec11_a_fd); pthread_create(&ec11_b_obj, NULL, ec11_scan_thread, &ec11_b_fd); signal(SIGINT, sigint_handler); // 注册信号处理函数 while (1) { pthread_mutex_lock(&lock); switch (ec11_direction) { case 1: count++;printf("顺时针转 : %d\n", count); break; case 2: count--;printf("逆时针转 : %d\n", count); break; case 3: count++;printf("按键按下顺时针转 : %d\n", count); break; case 4: count--;printf("按键按下逆时针转 : %d\n", count); break; case 5: printf("按键按下\n"); break; default: break; } ec11_direction = 0; pthread_mutex_unlock(&lock); usleep(10000); } return 0;
}
2.4、编译测试
# 如果使用buildroot系统,需要交叉编译。
# 这里使用的是ubuntu系统,直接使用gcc编译。
gcc -o build ec11.c
3、使用rotary-encoder驱动
rotary-encoder驱动是一个在内核态实现旋转编码器驱动。可以输出相对位置或者绝对位置,以下以输出相对位置举例。最终也是注册进input子系统。
3.1、dts配置
rotary@0 {compatible = "rotary-encoder"; gpios = <&gpio4 RK_PA6 GPIO_ACTIVE_HIGH>, <&gpio4 RK_PA4 GPIO_ACTIVE_HIGH>;linux,axis = <0>; /* REL_X */rotary-encoder,encoding = "gray";rotary-encoder,relative-axis;interrupt-parent = <&gpio4>;pinctrl-names = "default";pinctrl-0 = <&pinctrl_rotary>;
};&pinctrl {rotary {pinctrl_rotary:pinctrl_rotary {rockchip,pins = <4 RK_PA6 RK_FUNC_GPIO &pcfg_pull_none4 RK_PA4 RK_FUNC_GPIO &pcfg_pull_none>;};};
}
属性含义可参考:https://www.kernel.org/doc/Documentation/devicetree/bindings/input/rotary-encoder.txt
3.2、app测试程序编写
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <linux/input.h>int main(int argc, char *argv[])
{struct input_event ie;int fd;if (argc != 2) {fprintf(stderr, "usage: %s <input-dev>\n", argv[0]);exit(-1);}fd = open(argv[1], O_RDONLY);if (fd < 0) {fprintf(stderr, "can not open %s\n", argv[1]);exit(-1);}while (1){if (read(fd, &ie, sizeof(struct input_event)) == sizeof(struct input_event))printf("type:%d code:%d value:%d\n", ie.type, ie.code, ie.value);}
}
3.3、编译测试
# 如果使用buildroot系统,需要交叉编译。
# 这里使用的是ubuntu系统,直接使用gcc编译。
gcc -o build ec11_app.c
4、总结
参考文章:
Linux 输入设备调试详解(零基础开发)Rotary_Encoder旋转编码器驱动(EC11)通用GPIO为例 挂载input输入子系统_rotary encoder with display-CSDN博客