当前位置: 首页 > wzjs >正文

淘客网站让别人做7游网页游戏平台

淘客网站让别人做,7游网页游戏平台,免费咨询医生妇科医生,windows live writer wordpressEMD-SSA-VMD-LSTM混合模型 一、环境配置与依赖二、数据生成(示例数据)三、多级信号分解1. 经验模态分解(EMD)2. 奇异谱分析(SSA)3. 变分模态分解(VMD) 四、数据预处理1. 归一化处理2…

EMD-SSA-VMD-LSTM混合模型

  • 一、环境配置与依赖
  • 二、数据生成(示例数据)
  • 三、多级信号分解
    • 1. 经验模态分解(EMD)
    • 2. 奇异谱分析(SSA)
    • 3. 变分模态分解(VMD)
  • 四、数据预处理
    • 1. 归一化处理
    • 2. 数据集构建
  • 五、混合LSTM模型
    • 1. 模型架构
    • 2. 模型训练
  • 六、预测与结果重构
    • 1. 多步预测
    • 2. 结果反归一化
  • 七、性能评估与可视化
    • 1. 评估指标
    • 2. 结果可视化
  • 八、完整数据流说明
  • 九、参数调优建议
  • 十、扩展方向
  • 源码说明

以下是使用Python实现EMD-SSA-VMD-LSTM混合模型进行时间序列预测的完整代码,结合经验模态分解(EMD)、奇异谱分析(SSA)、变分模态分解(VMD)与LSTM深度学习模型。该方案适用于复杂非平稳信号的预测任务,代码包含数据生成、多级分解、模型构建和结果可视化。


一、环境配置与依赖

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PyEMD import EMD
from vmdpy import VMD
from scipy.linalg import hankel, svd
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_absolute_error, mean_squared_error
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader# 设置随机种子保证可复现性
np.random.seed(42)
torch.manual_seed(42)

二、数据生成(示例数据)

def generate_complex_signal(length=1000):"""生成含多成分的非平稳信号"""t = np.linspace(0, 10, length)# 趋势项trend = 0.02 * t**2 + 0.1 * t# 周期成分seasonal1 = 1.5 * np.sin(2 * np.pi * 0.8 * t)seasonal2 = 0.8 * np.cos(2 * np.pi * 2.5 * t)# 脉冲噪声impulse = np.zeros(length)impulse[np.random.choice(length, 20)] = np.random.uniform(-3, 3, 20)# 高斯噪声noise = 0.3 * np.random.randn(length)return trend + seasonal1 + seasonal2 + impulse + noise# 生成数据并可视化
data = generate_complex_signal()
plt.figure(figsize=(12,4))
plt.plot(data, color='darkblue')
plt.title("Generated Non-stationary Signal")
plt.show()

三、多级信号分解

1. 经验模态分解(EMD)

def emd_decomposition(signal):emd = EMD()imfs = emd(signal)return imfsimfs_emd = emd_decomposition(data)
print(f"EMD分解得到 {imfs_emd.shape[0]} 个IMF分量")

2. 奇异谱分析(SSA)

def ssa_decomposition(signal, window=30, rank=3):"""奇异谱分析核心函数"""# 构建轨迹矩阵L = windowK = len(signal) - L + 1X = hankel(signal[:L], signal[L-1:])# 奇异值分解U, S, VT = svd(X, full_matrices=False)# 选择主成分重构X_rank = (U[:, :rank] * S[:rank]) @ VT[:rank, :]# 对角平均化reconstructed = np.zeros_like(signal)for i in range(len(signal)):X_diag = np.diagonal(X_rank, offset=-(L-1-i))reconstructed[i] = X_diag.mean() if X_diag.size > 0 else 0return reconstructed# 对每个EMD-IMF执行SSA分解
components_ssa = []
for imf in imfs_emd:ssa_comp = ssa_decomposition(imf, window=30, rank=3)components_ssa.append(ssa_comp)

3. 变分模态分解(VMD)

def vmd_decomposition(signal, alpha=2000, K=4):u, _, _ = VMD(signal, alpha=alpha, tau=0, K=K, DC=0, init=1, tol=1e-7)return u# 对SSA结果进行VMD分解
final_components = []
for comp in components_ssa:vmd_comps = vmd_decomposition(comp, K=2)final_components.extend(vmd_comps)# 合并所有分量
all_components = np.vstack(final_components)
print(f"总分解分量数: {all_components.shape[0]}")

四、数据预处理

1. 归一化处理

scalers = []
scaled_components = []
for comp in all_components:scaler = MinMaxScaler(feature_range=(-1, 1))scaled = scaler.fit_transform(comp.reshape(-1, 1)).flatten()scaled_components.append(scaled)scalers.append(scaler)scaled_components = np.array(scaled_components)

2. 数据集构建

class HybridDataset(Dataset):def __init__(self, components, lookback=60, horizon=1):self.components = componentsself.lookback = lookbackself.horizon = horizondef __len__(self):return self.components.shape[1] - self.lookback - self.horizon + 1def __getitem__(self, idx):x = self.components[:, idx:idx+self.lookback].T  # (lookback, n_components)y = self.components[:, idx+self.lookback:idx+self.lookback+self.horizon].Treturn torch.FloatTensor(x), torch.FloatTensor(y)lookback = 60
horizon = 1
dataset = HybridDataset(scaled_components, lookback, horizon)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

五、混合LSTM模型

1. 模型架构

class MultiScaleLSTM(nn.Module):def __init__(self, input_size, hidden_size=128, output_size=1):super().__init__()# 特征提取层self.lstm1 = nn.LSTM(input_size, hidden_size, batch_first=True)self.dropout1 = nn.Dropout(0.3)# 时序预测层self.lstm2 = nn.LSTM(hidden_size, hidden_size//2, batch_first=True)self.dropout2 = nn.Dropout(0.2)# 输出层self.fc = nn.Linear(hidden_size//2, output_size)def forward(self, x):# 输入形状: (batch_size, seq_len, input_size)out, (h, c) = self.lstm1(x)out = self.dropout1(out)out, _ = self.lstm2(out)out = self.dropout2(out[:, -1, :])return self.fc(out)

2. 模型训练

model = MultiScaleLSTM(input_size=scaled_components.shape[0])
criterion = nn.MSELoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, weight_decay=1e-4)# 训练循环
for epoch in range(100):total_loss = 0for x, y in dataloader:optimizer.zero_grad()pred = model(x)loss = criterion(pred, y.squeeze())loss.backward()optimizer.step()total_loss += loss.item()print(f"Epoch {epoch+1}/100 | Loss: {total_loss/len(dataloader):.4f}")

六、预测与结果重构

1. 多步预测

def recursive_forecast(model, initial_seq, steps=50):current_seq = initial_seq.clone()predictions = []for _ in range(steps):with torch.no_grad():pred = model(current_seq.unsqueeze(0))predictions.append(pred.numpy()[0][0])# 更新输入序列current_seq = torch.cat([current_seq[1:], pred.unsqueeze(0)])return np.array(predictions)# 获取初始序列
test_input = scaled_components[:, -lookback:]
test_input = torch.FloatTensor(test_input.T)  # (lookback, n_components)# 执行预测
pred_steps = 50
prediction = recursive_forecast(model, test_input, pred_steps)

2. 结果反归一化

# 重构所有分量预测
pred_components = []
for i in range(len(scalers)):pred_scaled = prediction * 0  # 初始化pred_scaled[i::len(scalers)] = prediction  # 分量位置插值pred_components.append(scalers[i].inverse_transform(pred_scaled.reshape(-1, 1)))# 合成最终结果
final_pred = np.sum(pred_components, axis=0).flatten()# 获取真实值
true_values = data[-pred_steps:]

七、性能评估与可视化

1. 评估指标

mae = mean_absolute_error(true_values, final_pred)
rmse = np.sqrt(mean_squared_error(true_values, final_pred))
print(f"MAE: {mae:.4f}")
print(f"RMSE: {rmse:.4f}")

2. 结果可视化

plt.figure(figsize=(12,6))
plt.plot(true_values, label='True', marker='o', linestyle='--')
plt.plot(final_pred, label='Predicted', marker='x', linewidth=2)
plt.fill_between(range(len(final_pred)), final_pred - 1.96*rmse, final_pred + 1.96*rmse, alpha=0.2, color='orange')
plt.title("EMD-SSA-VMD-LSTM Multi-step Prediction")
plt.legend()
plt.grid(True)
plt.show()

八、完整数据流说明

步骤技术实现数学表达
信号生成合成趋势项+周期项+噪声 x ( t ) = ∑ i = 1 n a i f i ( t ) + ϵ ( t ) x(t) = \sum_{i=1}^{n} a_i f_i(t) + \epsilon(t) x(t)=i=1naifi(t)+ϵ(t)
EMD分解自适应分解非平稳信号 x ( t ) = ∑ k = 1 K c k ( t ) + r ( t ) x(t) = \sum_{k=1}^{K} c_k(t) + r(t) x(t)=k=1Kck(t)+r(t)
SSA分解轨迹矩阵SVD分解 X = U Σ V T \mathbf{X} = \mathbf{U\Sigma V}^T X=UΣVT
VMD分解变分模态优化分解 min ⁡ { u k } , { ω k } ∑ k ∥ ∂ t [ u k ( t ) e − j ω k t ] ∥ 2 2 \min_{\{u_k\},\{\omega_k\}} \sum_k \|\partial_t[u_k(t)e^{-j\omega_k t}]\|_2^2 {uk},{ωk}minkt[uk(t)ejωkt]22
特征融合多分量时序对齐 X stack = [ C 1 T ; C 2 T ; … ; C n T ] \mathbf{X}_{\text{stack}} = [\mathbf{C}_1^T; \mathbf{C}_2^T; \dots; \mathbf{C}_n^T] Xstack=[C1T;C2T;;CnT]
LSTM建模门控机制时序建模 f t = σ ( W f ⋅ [ h t − 1 , x t ] + b f ) f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) ft=σ(Wf[ht1,xt]+bf)
结果重构逆归一化加权求和 y ^ = ∑ k = 1 K scaler k − 1 ( c ^ k ) \hat{y} = \sum_{k=1}^{K} \text{scaler}_k^{-1}(\hat{c}_k) y^=k=1Kscalerk1(c^k)

九、参数调优建议

参数优化策略典型值范围
EMD最大IMF数根据信号复杂度调整5-10
SSA窗口长度取1/3周期长度20-50
VMD模态数(K)频谱分析确定3-6
LSTM隐藏层防止过拟合64-256
学习率余弦退火调整1e-4~1e-3
输入序列长度覆盖主要周期60-120

十、扩展方向

  1. 自适应分解

    # 自动确定VMD的K值
    from vmdpy import VMD
    def auto_vmd(signal, max_K=8):for K in range(3, max_K+1):u, _, _ = VMD(signal, alpha=2000, K=K)if np.any(np.isnan(u)):return K-1return max_K
    
  2. 概率预测

    # 修改输出层为分位数回归
    self.fc = nn.Linear(hidden_size//2, 3)  # 输出3个分位数
    
  3. 在线学习

    # 增量训练机制
    def online_update(model, new_data):model.train()optimizer.zero_grad()outputs = model(new_data)loss = criterion(outputs, targets)loss.backward()optimizer.step()
    

源码说明

  1. 数据兼容性

    • 支持CSV输入:修改generate_complex_signal()pd.read_csv()
    • 多变量扩展:调整输入维度为(n_features, seq_len)
  2. 性能优化

    • 启用CUDA加速:model.to('cuda')
    • 使用混合精度训练:scaler = torch.cuda.amp.GradScaler()
  3. 工业级部署

    # 模型保存与加载
    torch.save(model.state_dict(), 'multiscale_lstm.pth')
    model.load_state_dict(torch.load('multiscale_lstm.pth'))
    

该方案通过三级分解(EMD-SSA-VMD)充分提取信号多尺度特征,结合深度LSTM建模复杂时序依赖,在非平稳信号预测中展现出显著优势。实际应用时需根据数据特性调整分解参数与模型结构,并通过误差分析持续优化。


文章转载自:

http://0cJKLDBA.gLxmf.cn
http://8i1Wf4Xe.gLxmf.cn
http://Gytt0LI8.gLxmf.cn
http://ySAKfft6.gLxmf.cn
http://PPzwuE6x.gLxmf.cn
http://MaLFduvk.gLxmf.cn
http://O44m4tzt.gLxmf.cn
http://CxPl1h7e.gLxmf.cn
http://5EaoSA4d.gLxmf.cn
http://ZwIvaVvr.gLxmf.cn
http://89rtosiC.gLxmf.cn
http://bsinldUk.gLxmf.cn
http://IGTBbDUq.gLxmf.cn
http://5xOTTp9e.gLxmf.cn
http://VTRrWc3X.gLxmf.cn
http://0a7EAHYd.gLxmf.cn
http://5NTADL4d.gLxmf.cn
http://ybFlsGoN.gLxmf.cn
http://L1kXXQ4o.gLxmf.cn
http://5YgMUE0y.gLxmf.cn
http://H7RY3fli.gLxmf.cn
http://l7mrAgoH.gLxmf.cn
http://GyAOozta.gLxmf.cn
http://EGnntqVl.gLxmf.cn
http://X6HGewVv.gLxmf.cn
http://1uNFBZZa.gLxmf.cn
http://mxgBfxjR.gLxmf.cn
http://B8P5GR07.gLxmf.cn
http://cZZEOG3E.gLxmf.cn
http://pYcdXxXV.gLxmf.cn
http://www.dtcms.com/wzjs/657653.html

相关文章:

  • 优秀vi设计网站商城开发价格服务
  • seo网站程序做网站哪家南京做网站
  • 网站建设 网站开发 区别网站建设合理性
  • 流媒体视频网站建设哈尔滨模板建站新报价
  • 连锁店 网站建设 中企动力php自助建站程序
  • 银川网站开发推广企业页面设计代码怎么写
  • 电子商务网站开发项目策划书网站建设ppt演示文档
  • 网站开发中英文版如何写关键词seo排名公司
  • 怎么增加网站访问量营销推广的作用
  • 做销售网站wordpress mysql配置文件
  • 创建网站和主页企业所得税税前扣除项目有哪些
  • 整个网站都在下雪特效怎么做西安网页设计师
  • 安徽省建设厅门户网站新冠疫苗接种最新消息
  • 我做的网站有时打开很慢什么原因app开发需要多久
  • 辽宁省城乡和建设厅网站卖服务器网站源码
  • 英文二手汽车网站建设广东东莞住建局
  • 杨凌网站开发还能做网站的分类
  • 设计网站私单价格网站被墙什么意思
  • 专业建站外包做网站字体格式用锐利吗
  • 建筑网站图纸哪些广告平台留号码
  • 园区二学一做网站怎么看网站是否备案成功
  • 网站开发部组织架构西安网站建设案例
  • 营销型网站建设用途网站目录字典
  • 洛阳网站建设哪家好辽宁建设工程信息网网上开标
  • 摄影网站设计说明优化设计七年级上册语文答案
  • 桂林网站设计公司wordpress插件合并
  • 绍兴做微网站WordPress汉化卡片式主题
  • 汕头市品牌网站建设公司wordpress end_lvl
  • wordpress网站正在维护中技术支持 东莞网站建设舞蹈培训
  • 个人博客模板西安seo网站关键词优化