当前位置: 首页 > wzjs >正文

奥联网站建设在线网站建设询问报价

奥联网站建设,在线网站建设询问报价,域名在哪买,南通住房和城乡建设局网站首页LBP描述 LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikinen, 和D. Harwood 在1994年提出,用于纹理特征提取…

LBP描述

LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征

计算过程 

原始的LBP算子定义为在3\*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,3\*3邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共256种),即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息。数学表达式方式如下图所示

70f436408cb74b9a9e4812ab38623f9c.webp

 上述表述可能会比较抽象,接下来我们举一个例子表述 一下:

36d6c7fce56e48cb8880d94a03a4310f.webp 

代码实现

class LBP 
{
public:LBP(string url = "mm.jpg") :img(imread(url, IMREAD_GRAYSCALE)) {result["img"] = img;}void GetLBP(){result["LBP"] = Mat::zeros(img.rows - 2, img.cols - 2, CV_8UC1);for (int i = 1; i < img.rows - 1; i++) {for (int j = 1; j < img.cols - 1; j++) {uchar temp = img.at<uchar>(i, j);uchar color = 0;color |= (img.at<uchar>(i - 1, j - 1) > temp) << 7;color |= (img.at<uchar>(i - 1, j) > temp) << 6;color |= (img.at<uchar>(i - 1, j + 1) > temp) << 5;color |= (img.at<uchar>(i, j + 1) > temp) << 4;color |= (img.at<uchar>(i+1, j + 1) > temp) << 3;color |= (img.at<uchar>(i+1, j) > temp) << 2;color |= (img.at<uchar>(i+1, j - 1) > temp) << 1;color |= (img.at<uchar>(i, j - 1) > temp) << 0;result["LBP"].at<uchar>(i - 1, j - 1) = color;}}}void Show() {for (auto v : result) {imshow(v.first, v.second);}waitKey(0);}protected:map<string, Mat> result;Mat img;
};

 214a5f7746aa4b7499ff86a167f1bba9.webp

SIFT特征检测

尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结。 其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对。

SIFT算法是为了解决图片的匹配问题,想要从图像中提取一种对图像的大小和旋转变化保持鲁棒的特征,从而实现匹配。这一算法的灵感也十分的直观:人眼观测两张图片是否匹配时会注意到其中的典型区域(特征点部分),如果我们能够实现这一特征点区域提取过程,再对所提取到的区域进行描述就可以实现特征匹配了。

 

SIFT算法大致流程

高斯金字塔

  • 人看物体时近大远小,可以对图片下采样实现
  • 远处模糊,可以对图像高斯平滑实现

 

高斯差分金字塔特征提取

  • 获取了不同尺度的图片
  • 获取高频区域(边缘检测的算法使用差分滤波器如拉普拉斯滤波器、sobel滤波器)

 

特征点处理

  • 阈值化操作(去噪)
  • 非极大值抑制
  • 二阶泰勒修正
  • 低对比度去除
  • 边缘效应去除

 

描述特征点

  • 确定特征点区域方向
  • 特征点区域描述子

 

API介绍 

static Ptr<SIFT> create(int nfeatures = 0, int nOctaveLayers = 3,double contrastThreshold = 0.04, double edgeThreshold = 10,double sigma = 1.6);
/*******************************************************************
*            nfeatures:                     保留的最佳特性的数量            
*            cornOctaveLayersners:        高斯金字塔最小层级数
*            contrastThreshold:            对比度阈值用于过滤区域中的弱特征
*            edgeThreshold:              用于过滤掉类似边缘特征的阈值
*            sigma:                        高斯输入层级            
*********************************************************************/

 


virtual void detect( InputArray image,std::vector<KeyPoint>& keypoints,InputArray mask=noArray());
/*******************************************************************
*            image:                 输入图                
*            keypoints:            角点信息
*            mask:                计算亚像素角点区域大小            
*********************************************************************/

 


void drawKeypoints( InputArray image, const std::vector<KeyPoint>& keypoints, InputOutputArray outImage,const Scalar& color=Scalar::all(-1), DrawMatchesFlags flags=DrawMatchesFlags::DEFAULT );
/*******************************************************************
*            image:                 输入图                
*            keypoints:            角点信息
*            outImage:            输出图
*            color:              颜色
*            flags:                绘制标记            
*********************************************************************/

完整代码 

#include <iostream>
#include <map>
#include <new>
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
class SIFTFeature 
{
public:SIFTFeature() :img(imread("mm.jpg")) {result["img"] = img;}void TestSIFT() {Ptr<SIFT> sift = SIFT::create();sift->detect(img, point);drawKeypoints(img, point, result["SIFT"], Scalar(255, 0, 255));}void Show() {for (auto& v : result) {imshow(v.first, v.second);}waitKey(0);}
protected:Mat img;vector<KeyPoint> point;map<string, Mat> result;
};int  main() 
{unique_ptr<SIFTFeature> p(new SIFTFeature);p->TestSIFT();p->Show();return 0;
}

效果图:

7cbe859b2ef44a07b864e928728a95b4.webp 

 

http://www.dtcms.com/wzjs/589142.html

相关文章:

  • 网站开发中为什么有两个控制层山东教育网站开发公司
  • 阳江新农村建设网站wordpress 局域网
  • 中国网站备案查询系统上海公司注册网站
  • 网站建设和网页设计wordpress能够分权限查看模块吗
  • 大同网站建设开发做植物网站
  • 长沙网站建设索王道下拉成都品牌设计公司有哪些
  • 湖南微信网站网站设计佛山
  • 虚拟主机网站怎么上传文件网站栏目页面
  • 电视剧怎么做原创视频网站企业网站源码 企业网站管理系统
  • 平台网站怎么做seo网站建设基本技术
  • 自己的电脑做网站会收录吗全栈网站开发者
  • 重庆市官方网站企业网络规划实施方案
  • 金华网站开发大型企业网络设计方案
  • raid管理网站开发西安市建设网站
  • 旅游网页设计模板网站免费基础软件开发
  • 为什么上不了建设银行个人网站天天网站
  • 网站推广妙招怎么在自己的网站做淘宝客
  • 网站建设需要做哪些工作深圳建设工程网
  • 企业手机网站源码广州制作网站公司哪家好
  • 做网站不想用微软雅黑了如何创建网站挣钱
  • 怎么做国外游戏下载网站易购商城网站怎么做啊
  • 网站开发工程游戏设计师网站有哪些
  • 网站开发软件d企业微网站与手机微信号
  • 网站托管服务合同医院线上预约
  • wordpress网站域名地址有哪些网站可以免费发布广告
  • 怎么上传做 好的网站吗做租车行网站
  • 网站建设百度不通过wordpress ico不显示不出来
  • 检察院门户网站建设成效国内优秀网站设计
  • 网站安装系统怎么安装教程视频网站图片如何做超链接
  • 河北建设执业信息网官网wordpress 4.7优化精减