当前位置: 首页 > wzjs >正文

衡阳市城市建设投资有限公司网站物流网站开发项目书

衡阳市城市建设投资有限公司网站,物流网站开发项目书,wordpress 评论数,完成一个个人主页网站的制作在 PyTorch 中,Flatten 操作是将多维张量转换为一维向量的重要操作,常用于卷积神经网络(CNN)的全连接层之前。以下是 PyTorch 中实现 Flatten 的各种方法及其应用场景。 一、基本 Flatten 方法 1. 使用 torch.flatten() 函数 import torch# 创建一个4…

在 PyTorch 中,Flatten 操作是将多维张量转换为一维向量的重要操作,常用于卷积神经网络(CNN)的全连接层之前。以下是 PyTorch 中实现 Flatten 的各种方法及其应用场景。

一、基本 Flatten 方法

1. 使用 torch.flatten() 函数

import torch# 创建一个4D张量 (batch_size, channels, height, width)
x = torch.randn(32, 3, 28, 28)  # 32张28x28的RGB图像# 展平整个张量
flattened = torch.flatten(x)  # 输出形状: [75264] (32*3*28*28)# 从指定维度开始展平
flattened = torch.flatten(x, start_dim=1)  # 输出形状: [32, 2352] (保持batch维度)

2. 使用 nn.Flatten 层

import torch.nn as nnflatten = nn.Flatten()  # 默认从第1维开始展平(保持batch维度)
x = torch.randn(32, 3, 28, 28)
output = flatten(x)  # 输出形状: [32, 2352]

 可以指定开始和结束维度:

flatten = nn.Flatten(start_dim=1, end_dim=2)
x = torch.randn(32, 3, 28, 28)
output = flatten(x)  # 输出形状: [32, 84, 28] (合并了第1和2维)

二、不同场景下的 Flatten 应用

1. CNN 中的典型用法

class CNN(nn.Module):def __init__(self):super().__init__()self.conv_layers = nn.Sequential(nn.Conv2d(1, 16, 3),nn.ReLU(),nn.MaxPool2d(2),nn.Conv2d(16, 32, 3),nn.ReLU(),nn.MaxPool2d(2))self.flatten = nn.Flatten()self.fc = nn.Linear(32 * 5 * 5, 10)  # 计算展平后的尺寸def forward(self, x):x = self.conv_layers(x)x = self.flatten(x)  # 形状从 [B, 32, 5, 5] 变为 [B, 800]x = self.fc(x)return x

 2. 手动计算展平后的尺寸

# 计算卷积层输出尺寸的辅助函数
def conv_output_size(input_size, kernel_size, stride=1, padding=0):return (input_size - kernel_size + 2 * padding) // stride + 1# 计算经过多层卷积和池化后的尺寸
h, w = 28, 28  # 输入尺寸
h = conv_output_size(h, 3)  # conv1: 26
w = conv_output_size(w, 3)  # conv1: 26
h = conv_output_size(h, 2, 2)  # pool1: 13
w = conv_output_size(w, 2, 2)  # pool1: 13
h = conv_output_size(h, 3)  # conv2: 11
w = conv_output_size(w, 3)  # conv2: 11
h = conv_output_size(h, 2, 2)  # pool2: 5
w = conv_output_size(w, 2, 2)  # pool2: 5
print(f"展平后的特征数: {32 * h * w}")  # 32 * 5 * 5 = 800

三、高级用法

1. 部分展平

# 只展平图像空间维度,保留通道维度
x = torch.randn(32, 3, 28, 28)
flattened = x.flatten(start_dim=2)  # 形状: [32, 3, 784]

 2. 自定义 Flatten 层

class ChannelLastFlatten(nn.Module):"""将通道维度移到最后的展平层"""def forward(self, x):# 输入形状: [B, C, H, W]x = x.permute(0, 2, 3, 1)  # [B, H, W, C]return x.reshape(x.size(0), -1)  # [B, H*W*C]

3. 展平特定维度

# 展平批量维度和通道维度
x = torch.randn(32, 3, 28, 28)
flattened = x.flatten(end_dim=1)  # 形状: [96, 28, 28] (32*3=96)

四、注意事项

  1. 维度计算:确保展平后的尺寸与全连接层的输入尺寸匹配

  2. 批量维度:通常保留第0维(batch维度)不被展平

  3. 内存连续性view()需要连续内存,必要时先调用contiguous()

  4. 替代方法x.view(x.size(0), -1)flatten(start_dim=1)的常见替代写法

五、性能比较

方法优点缺点
torch.flatten()官方推荐,可读性好
nn.Flatten()可作为网络层使用需要实例化对象
x.view()最简洁需要手动计算尺寸
x.reshape()自动处理内存连续性性能略低于view

六、示例代码

import torch
import torch.nn as nn# 定义一个包含Flatten的完整模型
class ImageClassifier(nn.Module):def __init__(self):super().__init__()self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2))self.flatten = nn.Flatten()self.classifier = nn.Sequential(nn.Linear(256 * 4 * 4, 1024),  # 假设输入图像是32x32nn.ReLU(inplace=True),nn.Dropout(0.5),nn.Linear(1024, 10))def forward(self, x):x = self.features(x)x = self.flatten(x)x = self.classifier(x)return x# 使用示例
model = ImageClassifier()
input_tensor = torch.randn(16, 3, 32, 32)  # batch=16, 3通道, 32x32图像
output = model(input_tensor)
print(output.shape)  # 输出形状: [16, 10]

http://www.dtcms.com/wzjs/584018.html

相关文章:

  • 建设网站需要哪些语言做IP授权的一般看什么网站
  • 做的比较好的企业网站阅读小说网站建设
  • 做外贸如何分析客户网站同一个服务器可以做多个网站
  • 淄博哪有培训做网站的自己做网站如何月入3k
  • 广东省住房和城乡建设网站新乡个人网站建设哪家好
  • 安阳网站建设哪家正规哪个做网站公司
  • 广州公司营销型网站建设网站免费的有没有
  • 免费建站自助建站做电商有哪些网站有哪些内容
  • 智能模板网站建设费用河北高端网站建设
  • 虹口网站制作全能网站建设完全自学手册
  • 怎么查网站的注册信息电子政务与网站建设方面
  • 沧浪企业建设网站公司石家庄营销型网站建设费用
  • 国外直播做游戏视频网站wordpress首页排版更换
  • 菏泽最好的网站建设公司怎么做免费的网站空间
  • wordpress区块编辑器360如何做网站优化
  • 备案价网站上海网站群建设
  • 网站建设歺金手指排名15企业培训方案制定
  • 网站制作多少青岛城运控股集团
  • 企业集团网站建设方案东莞网络营销外包价格
  • 深圳汽车网站建设做费网站
  • 珠海网站建设 旭洁国外域名
  • 企业网站接入微信支付asp图片源码网站
  • 做网站点击率赚钱电子商务网站建设费用
  • 长沙网站搜索排名seo推广效果
  • 福州云建站模版小程序怎么制作自己的小程序
  • 先做网站还是先备案建筑工程管理适合女生吗
  • 网站类游戏网站开发百度搜索网页版入口
  • 免费行情软件网站mnw公司名字注册查询
  • 郑州专业网站推广公司wordpress底部页面在哪里
  • 辽宁省建设厅投诉网站免费制作表格的app