当前位置: 首页 > wzjs >正文

专业的常州网站建设建筑行业数据共享平台网站

专业的常州网站建设,建筑行业数据共享平台网站,7一12岁手工玩具小制作,上海网站制作工作室互信息 定义公式 从条件熵中我们知道,当获取的信息和要研究的食物”有关系时“,这些信息才能帮助我们消除不确定性。如何衡量获取信息和要研究事物“有关系”呢?比如常识告诉我们,一个随机事件“今天深圳下雨”和另一个随机事件“…

互信息

定义公式

  • 从条件熵中我们知道,当获取的信息和要研究的食物”有关系时“,这些信息才能帮助我们消除不确定性。如何衡量获取信息和要研究事物“有关系”呢?比如常识告诉我们,一个随机事件“今天深圳下雨”和另一个随机事件“过去24小时深圳空气湿度”相关性很大,但是相关性到底有多大?怎么衡量?再比如“过去24小时深圳空气湿度”似乎就和“北京天气”相关性不大。

  • 香农在信息论中提出”互信息“的概念作为两个随机事件“相关性”的量化度量

  • 假定有两个随机事件X和Y,他们的互信息定义如下:
    I ( X : Y ) = H ( X ) − H ( X ∣ Y ) = H ( Y ) − H ( Y ∣ X ) = H ( X ) + H ( Y ) − H ( X , Y ) = H ( X , Y ) − H ( X ∣ Y ) − H ( Y ∣ X ) = ∑ x ∈ X , y ∈ Y p ( x , y ) log ⁡ p ( x , y ) p ( x ) p ( y ) \begin{aligned} I(X:Y) &=H(X)-H(X|Y)\\ &=H(Y)-H(Y|X)\\ &=H(X)+H(Y)-H(X,Y)\\ &=H(X,Y)-H(X|Y)-H(Y|X)\\ &= \sum_{x\in X,y\in Y}p(x,y)\log\frac{p(x,y)}{p(x)p(y)} \end{aligned} I(X:Y)=H(X)H(XY)=H(Y)H(YX)=H(X)+H(Y)H(X,Y)=H(X,Y)H(XY)H(YX)=xX,yYp(x,y)logp(x)p(y)p(x,y)
    当X和Y完全相同时互信息的取值是H(X),同时H(X)=H(Y);当二者完全无关时互信息取值为0。

  • 所谓两个时间相关性的量化度量,就是在了解了其中一个Y的前提下,对消除另一个X不确定性所提供的信息量。

公式推导

  • 两种推导公式

  • I ( X : Y ) = H ( X ) − H ( X ∣ Y ) I(X:Y) = H(X)-H(X|Y) I(X:Y)=H(X)H(XY)
    I ( X : Y ) = H ( X ) − H ( X ∣ Y ) = − ∑ x p ( x ) log ⁡ p ( x ) − ( − ∑ x , y p ( x , y ) log ⁡ p ( x , y ) ) ∵ p ( x ) = ∑ y p ( x , y ) ∴ = ∑ x , y p ( x , y ) log ⁡ p ( x ∣ y ) − ∑ x , y p ( x , y ) log ⁡ p ( x ) = ∑ x , y p ( x , y ) log ⁡ p ( x ∣ y ) p ( x ) ∵ p ( x ∣ y ) = p ( x , y ) p ( y ) ∴ = ∑ x , y p ( x , y ) log ⁡ p ( x , y ) p ( x ) p ( y ) \begin{aligned} I(X:Y) &= H(X)-H(X|Y)\\ &=-\sum_{x}p(x)\log p(x)-\left(-\sum_{x,y}p(x,y)\log p(x,y) \right)\\ \because & ~~ p(x)=\sum_y p(x,y) \\ \therefore&=\sum_{x,y}p(x,y)\log p(x|y)-\sum{x,y}p(x,y)\log p(x)\\ &=\sum_{x,y}p(x,y)\log \frac{p(x|y)}{p(x)}\\ \because& ~~ p(x|y) = \frac{p(x,y)}{p(y)} \\ \therefore&=\sum_{x,y}p(x,y)\log \frac{p(x,y)}{p(x)p(y)} \end{aligned} I(X:Y)=H(X)H(XY)=xp(x)logp(x)(x,yp(x,y)logp(x,y))  p(x)=yp(x,y)=x,yp(x,y)logp(xy)x,yp(x,y)logp(x)=x,yp(x,y)logp(x)p(xy)  p(xy)=p(y)p(x,y)=x,yp(x,y)logp(x)p(y)p(x,y)

  • I ( X : Y ) = H ( X ) + H ( Y ) − H ( X , Y ) I(X:Y) = H(X)+H(Y)-H(X,Y) I(X:Y)=H(X)+H(Y)H(X,Y)
    I ( X : Y ) = H ( X ) + H ( Y ) − H ( X , Y ) = − ∑ x p ( x ) log ⁡ p ( x ) − ( − ∑ y p ( y ) log ⁡ p ( y ) ) − ( − ∑ x , y p ( x , y ) log ⁡ p ( x , y ) ) = ∑ x , y p ( x , y ) log ⁡ p ( x , y ) − ( ∑ x p ( x ) log ⁡ p ( x ) − ∑ y p ( y ) log ⁡ p ( y ) ) ∵ p ( x ) = ∑ y p ( x , y ) ∴ = ∑ x , y p ( x , y ) log ⁡ p ( x , y ) − ( ∑ x , y p ( x , y ) log ⁡ p ( x ) − ∑ x , y p ( x , y ) log ⁡ p ( y ) ) = ∑ x , y p ( x , y ) log ⁡ p ( x , y ) p ( x ) p ( y ) \begin{aligned} I(X:Y) &= H(X)+H(Y)-H(X,Y)\\ &=-\sum_{x}p(x)\log p(x)-\left(-\sum_{y}p(y)\log p(y)\right)-\left(-\sum_{x,y}p(x,y)\log p(x,y)\right)\\ &=\sum_{x,y}p(x,y)\log p(x,y)-\left(\sum_{x}p(x)\log p(x)-\sum_{y}p(y)\log p(y)\right)\\ \because & ~~ p(x)=\sum_y p(x,y) \\ \therefore&=\sum_{x,y}p(x,y)\log p(x,y)-\left(\sum_{x,y}p(x,y)\log p(x)-\sum_{x,y}p(x,y)\log p(y)\right)\\ &=\sum_{x,y}p(x,y)\log \frac{p(x,y)}{p(x)p(y)} \end{aligned} I(X:Y)=H(X)+H(Y)H(X,Y)=xp(x)logp(x)(yp(y)logp(y))(x,yp(x,y)logp(x,y))=x,yp(x,y)logp(x,y)(xp(x)logp(x)yp(y)logp(y))  p(x)=yp(x,y)=x,yp(x,y)logp(x,y)(x,yp(x,y)logp(x)x,yp(x,y)logp(y))=x,yp(x,y)logp(x)p(y)p(x,y)


http://www.dtcms.com/wzjs/582156.html

相关文章:

  • 网站一个人可以做吗网站网页设计教程
  • 做网站前台模板wap asp网站模板下载
  • wordpress 付费剧集网站企业网站建设的一般原则包括
  • 看上去高端的网站小型公司网络建设方案
  • 网站页面关键词优化php网站建设方案
  • 装修公司网站建设设计作品网站流程设计
  • 鲜花便宜的网站建设wordpress 博客程序
  • 网站维护公司哈尔滨seo网站优化培
  • 密云做网站的适合个人网站
  • 做电影网站哪个源码好手机编程免费软件app
  • 洛阳做网站推广wordpress qps
  • 天津建设网站安管人员成绩查询怎么看一个网站是哪个公司做的
  • 恒星科技网站建设wordpress可以做企业管理系统吗
  • 博客类网站模板浙江网站建设哪里有
  • 搜索引擎网站制作Wordpress对接阿里云OSS
  • 临沂seo网站推广山东省交通厅建设网站
  • 关于网站建设知识企业所得税怎么征收2021
  • 网站注册页面怎么做数据验证做视频网站赚钱嘛
  • 网站建设 广手机网站建设宽度
  • 新网免费做网站长沙网络公司排名
  • 外贸网站建设与推广创意海报设计
  • ppt图标网站链接怎么做怎样做网站权重
  • 查楼盘剩余房源的网站网站快速优化排名免费
  • CMS网站建设实战试题用户体验设计书籍
  • 佛山市品牌网站建设哪家好网站建设游戏开发
  • 北京人才招聘网站快站怎么搭建淘客链接
  • 国外的旅游网站做的如何成都房产信息网官网查询系统
  • 网站前台功能模块介绍宿松网站建设公司
  • 网站建设白沟做网站服务费税率
  • 高端品牌网站建设费用短视频网站建设方案