当前位置: 首页 > wzjs >正文

沈阳网页设计师seo关键词排名优化联系方式

沈阳网页设计师,seo关键词排名优化联系方式,wordpress广告收入,爱淘苗网站开发模式1.DeepKE 是一个开源的知识图谱抽取与构建工具,支持cnSchema、低资源、长篇章、多模态的知识抽取工具,可以基于PyTorch实现命名实体识别、关系抽取和属性抽取功能。同时为初学者提供了文档,在线演示, 论文, 演示文稿和海报。 2.下载对应的de…

1.DeepKE 是一个开源的知识图谱抽取与构建工具,支持cnSchema、低资源、长篇章、多模态的知识抽取工具,可以基于PyTorch实现命名实体识别关系抽取属性抽取功能。同时为初学者提供了文档,在线演示, 论文, 演示文稿和海报。

2.下载对应的demo代码

3.准备环境

conda create -n deepke-llm python=3.9
conda activate deepke-llmcd example/llm
pip install -r requirements.txtpip install ujson

 4.demo目录介绍

我们直接运行demo.py,就会出现三个选项,每个选项对应一个文件夹

NER(命名实体识别)- 选项1:
基础模型:bert-base-chinese
任务模型:需要从 DeepKE 下载预训练的 NER 模型
位置:neme_entity_recognition/checkpoints/
RE(关系抽取)- 选项2:
基础模型:bert-base-chinese(已有)
任务模型:需要从 DeepKE 下载预训练的 RE 模型
位置:relation_extraction/checkpoints/
AE(属性抽取)- 选项3:
基础模型:bert-base-chinese(已有)
任务模型:需要从 DeepKE 下载预训练的 AE 模型(lm_epoch1.pth)
位置:attributation_extraction/checkpoints/

5.我们先下载本地模型,我直接在本地下载模型

 git clone https://www.modelscope.cn/tiansz/bert-base-chinese.git

修改选项2和选项3中对应的模型的路径为本地路径

 关系抽取的

属性抽取的

 

6.然后去官网下载预训练模型

我发现属性抽取没有提供预训练模型

但是其余两个有,下载地址如下https://drive.google.com/drive/folders/1wb_QIZduKDwrHeri0s5byibsSQrrJTEv

(https://github.com/zjunlp/DeepKE/blob/main/README_CNSCHEMA_CN.md)

7.将下载好的re和ner对应的文件放到对应的位置

1)re

修改relation_extraction中的demo.py的路径和tokenizer,完整代码如下

import os
import numpy as np
import torch
import random
import pickle
from tqdm import tqdm
import ujson as json
from torch.utils.data import DataLoader
from transformers import AutoConfig, AutoModel, AutoTokenizer
import time
from .process import *def to_official(preds, features):rel2id = json.load(open(f'relation_extraction/data/rel2id.json', 'r'))rel2info = json.load(open(f'relation_extraction/data/rel_info.json', 'r'))entity = json.load(open(f'relation_extraction/data/output.json', 'r'))id2rel = {value: key for key, value in rel2id.items()}h_idx, t_idx, title = [], [], []for f in features:hts = f["hts"]h_idx += [ht[0] for ht in hts]t_idx += [ht[1] for ht in hts]title += [f["title"] for ht in hts]res = []for i in range(preds.shape[0]):pred = preds[i]pred = np.nonzero(pred)[0].tolist()for p in pred:if p != 0:h_entity, t_entity = '', ''for en in entity[0]['vertexSet'][h_idx[i]]:if len(en['name']) > len(h_entity):h_entity = en['name']for en in entity[0]['vertexSet'][t_idx[i]]:if len(en['name']) > len(t_entity):t_entity = en['name']res.append({'h': h_entity,'t': t_entity,'r': rel2info[id2rel[p]],})return resclass ReadDataset:def __init__(self, tokenizer, max_seq_Length: int = 1024,transformers: str = 'bert') -> None:self.transformers = transformersself.tokenizer = tokenizerself.max_seq_Length = max_seq_Lengthdef read(self, file_in: str):save_file = file_in.split('.json')[0] + '_' + self.transformers + '.pkl'return read_docred(self.transformers, file_in, save_file, self.tokenizer, self.max_seq_Length)def read_docred(transfermers, file_in, save_file, tokenizer, max_seq_length=1024):max_len = 0up512_num = 0i_line = 0pos_samples = 0neg_samples = 0features = []docred_rel2id = json.load(open(f'relation_extraction/data/rel2id.json', 'r'))if file_in == "":return Nonewith open(file_in, "r") as fh:data = json.load(fh)if transfermers == 'albert':entity_type = ["-", "ORG", "-",  "LOC", "-",  "TIME", "-",  "PER", "-", "MISC", "-", "NUM"]for sample in data:sents = []sent_map = []entities = sample['vertexSet']entity_start, entity_end = [], []mention_types = []for entity in entities:for mention in entity:sent_id = mention["sent_id"]pos = mention["pos"]entity_start.append((sent_id, pos[0]))entity_end.append((sent_id, pos[1] - 1))mention_types.append(mention['type'])for i_s, sent in enumerate(sample['sents']):new_map = {}for i_t, token in enumerate(sent):tokens_wordpiece = tokenizer.tokenize(token)if (i_s, i_t) in entity_start:t = entity_start.index((i_s, i_t))if transfermers == 'albert':mention_type = mention_types[t]special_token_i = entity_type.index(mention_type)special_token = ['[unused' + str(special_token_i) + ']']else:special_token = ['*']tokens_wordpiece = special_token + tokens_wordpieceif (i_s, i_t) in entity_end:t = entity_end.index((i_s, i_t))if transfermers == 'albert':mention_type = mention_types[t]special_token_i = entity_type.index(mention_type) + 50special_token = ['[unused' + str(special_token_i) + ']']else:special_token = ['*']tokens_wordpiece = tokens_wordpiece + special_tokennew_map[i_t] = len(sents)sents.extend(tokens_wordpiece)new_map[i_t + 1] = len(sents)sent_map.append(new_map)if len(sents)>max_len:max_len=len(sents)if len(sents)>512:up512_num += 1train_triple = {}if "labels" in sample:for label in sample['labels']:evidence = label['evidence']r = int(docred_rel2id[label['r']])if (label['h'], label['t']) not in train_triple:train_triple[(label['h'], label['t'])] = [{'relation': r, 'evidence': evidence}]else:train_triple[(label['h'], label['t'])].append({'relation': r, 'evidence': evidence})entity_pos = []for e in entities:entity_pos.append([])mention_num = len(e)for m in e:start = sent_map[m["sent_id"]][m["pos"][0]]end = sent_map[m["sent_id"]][m["pos"][1]]entity_pos[-1].append((start, end,))relations, hts = [], []# Get positive samples from datasetfor h, t in train_triple.keys():relation = [0] * len(docred_rel2id)for mention in train_triple[h, t]:relation[mention["relation"]] = 1evidence = mention["evidence"]relations.append(relation)hts.append([h, t])pos_samples += 1# Get negative samples from datasetfor h in range(len(entities)):for t in range(len(entities)):if h != t and [h, t] not in hts:relation = [1] + [0] * (len(docred_rel2id) - 1)relations.append(relation)hts.append([h, t])neg_samples += 1assert len(relations) == len(entities) * (len(entities) - 1)if len(hts)==0:print(len(sent))sents = sents[:max_seq_length - 2]input_ids = tokenizer.convert_tokens_to_ids(sents)input_ids = tokenizer.build_inputs_with_special_tokens(input_ids)i_line += 1feature = {'input_ids': input_ids,'entity_pos': entity_pos,'labels': relations,'hts': hts,'title': sample['title'],}features.append(feature)with open(file=save_file, mode='wb') as fw:pickle.dump(features, fw)return featuresdef collate_fn(batch):max_len = max([len(f["input_ids"]) for f in batch])input_ids = [f["input_ids"] + [0] * (max_len - len(f["input_ids"])) for f in batch]input_mask = [[1.0] * len(f["input_ids"]) + [0.0] * (max_len - len(f["input_ids"])) for f in batch]input_ids = torch.tensor(input_ids, dtype=torch.long)input_mask = torch.tensor(input_mask, dtype=torch.float)entity_pos = [f["entity_pos"] for f in batch]labels = [f["labels"] for f in batch]hts = [f["hts"] for f in batch]output = (input_ids, input_mask, labels, entity_pos, hts )return outputdef report(args, model, features):device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")dataloader = DataLoader(features, batch_size=args.test_batch_size, shuffle=False, collate_fn=collate_fn, drop_last=False)preds = []for batch in dataloader:model.eval()inputs = {'input_ids': batch[0].to(device),'attention_mask': batch[1].to(device),'entity_pos': batch[3],'hts': batch[4],}with torch.no_grad():pred = model(**inputs)pred = pred.cpu().numpy()pred[np.isnan(pred)] = 0preds.append(pred)preds = np.concatenate(preds, axis=0).astype(np.float32)preds = to_official(preds, features)return predsclass Config(object):unet_in_dim=3unet_out_dim=256max_height=42down_dim=256channel_type='context-based'unet_out_dim=256test_batch_size=2cfg = Config()def color(text, color="\033[1;34m"): return color+text+"\033[0m"def doc_re():sentence = input(f"Enter the {color('sentence')}: ")input_file = 'relation_extraction/input.txt'with open(input_file , 'w') as f:f.write(sentence)txt2json(input_file, 'relation_extraction/data/output.json')device = torch.device("cpu")bert_path = '/mnt/workspace/DeepKE-demo/bert-base-chinese'config = AutoConfig.from_pretrained(bert_path, num_labels=97)tokenizer = AutoTokenizer.from_pretrained(bert_path)Dataset = ReadDataset(tokenizer, 1024, transformers='bert')test_file = 'relation_extraction/data/output.json'test_features = Dataset.read(test_file)model = AutoModel.from_pretrained(bert_path, from_tf=False, config=config)config.cls_token_id = tokenizer.cls_token_idconfig.sep_token_id = tokenizer.sep_token_idconfig.transformer_type = 'bert'seed = 111random.seed(seed)np.random.seed(seed)torch.manual_seed(seed)if torch.cuda.is_available():torch.cuda.manual_seed_all(seed)model = DocREModel(config, cfg, model, num_labels=4)checkpoint_path = 'relation_extraction/checkpoints/re_bert.pth'if not os.path.exists(checkpoint_path):raise FileNotFoundError(f"预训练模型文件不存在:{checkpoint_path},请确保已下载模型文件并放置在正确位置。")# 加载预训练权重# model.load_state_dict(torch.load(checkpoint_path, map_location='cpu'))# 加载预训练权重并处理键名不匹配state_dict = torch.load(checkpoint_path, map_location='cpu')new_state_dict = {}for k, v in state_dict.items():if k.startswith('bert.'):new_k = 'bert_model.' + k[5:]  # 将 'bert.' 替换为 'bert_model.'new_state_dict[new_k] = velse:new_state_dict[k] = v# 加载可以加载的权重model_dict = model.state_dict()pretrained_dict = {k: v for k, v in new_state_dict.items() if k in model_dict}model_dict.update(pretrained_dict)model.load_state_dict(model_dict, strict=False)model.to(device)pred = report(cfg, model, test_features)with open(input_file.split('.txt')[0]+'.json', "w") as fh:json.dump(pred, fh)print()print(f"The {color('triplets')} are as follow:")print()for i in pred:print(i)print()if __name__ == "__main__":doc_re()

同时修改/mnt/workspace/DeepKE-demo/relation_extraction/process/model.py

def encode(self, input_ids, attention_mask,entity_pos):config = self.configif config.transformer_type == "albert":start_tokens = [config.cls_token_id]end_tokens = [config.sep_token_id]elif config.transformer_type == "bert":start_tokens = [config.cls_token_id]end_tokens = [config.sep_token_id]elif config.transformer_type == "roberta":start_tokens = [config.cls_token_id]end_tokens = [config.sep_token_id, config.sep_token_id]sequence_output, attention = process_long_input(self.bert_model, input_ids, attention_mask, start_tokens, end_tokens)return sequence_output, attention

测试句子有格式要求:{[0][PER]欧阳菲菲}演唱的{[1][SONG]没有你的夜晚},出自专辑{[2][ALBUM]拥抱}

最后结果

2)ner

将下载好的checkpoint_bert.zip移动到ner文件夹下并解压缩,然后运行,记得重命名为checkpointints

运行报错,标签老是对不上,重新训练

/mnt/workspace/DeepKE/example/ner/standard路径下

下载数据集

wget 120.27.214.45/Data/ner/standard/data.tar.gztar -xzvf data.tar.gz

然后修改配置,改为自己的路径名

/mnt/workspace/DeepKE/example/ner/standard/conf/hydra/model/bert.yaml

安装环境依赖(重新建一个conda环境吧,训练不等同于推理)conda create -n deepke python=3.8conda activate deepkepip install pip==24.0
在DeepKE源码根目录下(git clone https://github.com/zjunlp/DeepKE.git)
pip install --use-pep517 seqeval
pip install -r requirements.txtpython setup.py installpython setup.py develop
pip install safetensors

/mnt/workspace/DeepKE/example/ner/standard路径下

运行python run_bert.py 

如果用gpu训练的话,需要

pip uninstall torch torchvision torchaudio -ypip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113

24g显存,使用率是70%,训练了两个小时左右

but,效果并不好

http://www.dtcms.com/wzjs/55968.html

相关文章:

  • 免费的推广平台seo关键词智能排名
  • asp.net 4.0网站开发实例教程长沙seo外包平台
  • 网站备案和域名备案网站seo收费
  • 做网站需要准备哪些材料网站seo外包公司
  • 网站做图尺寸大小宝塔没有域名直接做网站怎么弄
  • 做网站和管理系统网站建设方案模板
  • 网站导航的展开与收缩怎么做的网络营销策划书包括哪些内容
  • 替别人做网站管理员sem是什么岗位
  • 工程建设标准最新查询网站湖北网络推广有限公司
  • 网站开发英文翻译google广告投放
  • 曹县做网站建设百度推广公司电话
  • 厦门网站建设 软件园百度一下图片识别
  • 彩妆网站建设深圳百度推广代理商
  • 如何进行网站分析国内比较好的软文网站
  • 网站建设二团队成年学校培训班
  • 家具网站模版找回原来的百度
  • 个人网站好备案吗自媒体服务平台
  • 做网站怎么选关键词自助建站官网
  • 手机网站优化百度网址大全怎么设为主页
  • 本地网站asp iis河南推广网站
  • 北京公司建网站要多少费用推广的软件有哪些
  • 网站推广新手教程国外域名
  • 旅游网站模板库谷歌google
  • 做网站开专票税钱是多少个点营销管理系统
  • iis7.5配置网站百度云资源搜索引擎
  • 网站上线前测试凡科建站手机版登录
  • 儿童故事网站建设百度搜索词排名
  • 湛江做网站定做价格百度官网首页登陆
  • wordpress文本编辑器杭州关键词优化平台
  • 搜阅网站建设霸榜seo