当前位置: 首页 > wzjs >正文

搜阅网站建设霸榜seo

搜阅网站建设,霸榜seo,深圳人才网官方网站,展厅设计行业平台第1章 實分析與函數論:快速回顧(下) 五、基數;有限集和無限集相關例題 例題1:集合基數的判斷 判斷集合和集合B=\{a,b,c,d,e\}的基數關係。 解析: 可以構造一個雙射,例如,,,,。 所以,兩個集合具有相同的基數。 例題2:可數集的證明 證明整數集是可數集。 解析: …

第1章 實分析與函數論:快速回顧(下)

五、基數;有限集和無限集相關例題

例題1:集合基數的判斷

判斷集合A=\{1,2,3,4,5\}和集合B=\{a,b,c,d,e\}的基數關係。

解析:

可以構造一個雙射f:A\rightarrow B,例如f(1)=af(2)=bf(3)=cf(4)=df(5)=e

所以\text{card}(A)=\text{card}(B)=5,兩個集合具有相同的基數。

例題2:可數集的證明

證明整數集\mathbb{Z}是可數集。

解析:

構造映射f:\mathbb{Z}\to\mathbb{N}f(n)=\begin{cases}2n, & n\geq0\\ - 2n - 1, & n<0\end{cases}

- 證明f是單射:

n_1\neq n_2,分情況討論。

n_1,n_2\geq0時,若n_1\neq n_2,則2n_1\neq2n_2,即f(n_1)\neq f(n_2)

n_1,n_2<0時,若n_1\neq n_2,則-2n_1 - 1\neq - 2n_2 - 1,即f(n_1)\neq f(n_2)

n_1\geq0n_2<0時,2n_1\geq0-2n_2 - 1>02n_1是偶數,-2n_2 - 1是奇數,所以f(n_1)\neq f(n_2)

所以f是單射。

- 證明f是滿射:

任取m\in\mathbb{N},若m是偶數,設m = 2kk\in\mathbb{N}),則n = k時,f(n)=2k=m

m是奇數,設m = 2k + 1k\in\mathbb{N}\cup\{0\}),則金k\in\mathbb{N}\cup\{0\}時,

f(n)=-2(-(k + 1))-1=2k + 1=m

所以f是滿射。

由於存在雙射f:\mathbb{Z}\to\mathbb{N},所以\text{card}(\mathbb{Z})=\text{card}(\mathbb{N})=\aleph_0,即\mathbb{Z}是可數集。

例題3:不可數集的證明

證明實數集\mathbb{R}是不可數集。

解析:

採用康托爾的對角線法。假設\mathbb{R}是可數集,則\mathbb{R}中的實數可以排成一個序列x_1,x_2,x_3,\cdots

將每個實數x_n表示成無限小數形式(例如x_1 = 0.a_{11}a_{12}a_{13}\cdotsx_2 = 0.a_{21}a_{22}a_{23}\cdots)。

構造一個新的實數y = 0.b_1b_2b_3\cdots,其中b_i\neq a_{ii}(例如當a_{ii}=1時,b_i = 2;當a_{ii}\neq1時,b_i = 1)。

這樣y與序列中的每一個實數x_n都不同,這與\mathbb{R}中的實數可以排成序列矛盾。

所以\mathbb{R}是不可數集。

例題4:集合基數大小的比較

證明\text{card}(\mathbb{N})<\text{card}(\mathbb{R})

解析:

已知\text{card}(\mathbb{N})=\aleph_0,且已證明\mathbb{R}是不可數集,其基數\text{card}(\mathbb{R})=\mathfrak{c}

又因為存在單射f:\mathbb{N}\to\mathbb{R},例如f(n)=n,但不存在雙射g:\mathbb{N}\to\mathbb{R}(由例題3中\mathbb{R}不可數證明可知)。

根據基數大小比較的定義,若存在從集合A到集合B的單射,但不存在雙射,則\text{card}(A)<\text{card}(B),所以\text{card}(\mathbb{N})<\text{card}(\mathbb{R})

例題5:無限集與可數子集的關係

已知集合A=\{x\in\mathbb{R}:x>0\},找出A的一個可數子集。

解析:

考慮集合B = \{1,2,3,\cdots\},B\subseteq A。

因為B與自然數集\mathbb{N}具有相同的基數(可構造雙射f:\mathbb{N}\to Bf(n)=n),所以B是可數集,即BA的一個可數子集。

例題6:基數運算

已知集合A的基數\text{card}(A)=\aleph_0,集合B的基數\text{card}(B)=3,求\text{card}(A\times B)

解析:

\text{card}(A)=\aleph_0\text{card}(B)=nn為有限基數),則\text{card}(A\times B)=\text{card}(A)\times\text{card}(B)

所以\text{card}(A\times B)=\aleph_0\times3=\aleph_0

這是因為可將A\times B的元素排列成如下形式:

假設A = \{a_1,a_2,a_3,\cdots\}B=\{b_1,b_2,b_3\}

A\times B=\{(a_1,b_1),(a_1,b_2),(a_1,b_3),(a_2,b_1),(a_2,b_2),(a_2,b_3),\cdots\}

可按照先固定第一個元素的第一個位置,依次遍歷第二個元素的所有可能,再移動第一個元素的位置的方式,構造出A\times B\mathbb{N}的一一對應,故其基數為\aleph_0
 


例題7:證明集合基數的等式


證明若AB是不相交的可數集,即A\cap B=\varnothing,且\text{card}(A)=\text{card}(B)=\aleph_0,則\text{card}(A\cup B)=\aleph_0
解析:
因為AB是可數集,所以存在雙射f:\mathbb{N}\to Ag:\mathbb{N}\to B
定義映射h:\mathbb{N}\to A\cup B如下:(CSDN的LaTex輸出不了奇數、偶數的中文文本,故用k代替)
h(n)=\begin{cases}f\left(\frac{n + 1}{2}\right),&n\text{ =2k+1}\\g\left(\frac{n}{2}\right),&n\text{ =2k}\end{cases}
首先證明h是單射:
n_1\neq n_2

n_1,n_2都是奇數時,n_1 = 2k_1 - 1n_2 = 2k_2 - 1,若h(n_1)=h(n_2),則f(k_1)=f(k_2),因為f是雙射,所以k_1 = k_2,進而n_1 = n_2,矛盾。


n_1,n_2都是偶數時,n_1 = 2k_1 - 1n_2 = 2k_2 - 1,若h(n_1)=h(n_2),則g(k_1)=g(k_2),因為g是雙射,所以k_1 = k_2,進而n_1 = n_2,矛盾。

n_1為奇數,n_2為偶數時,h(n_1)\in Ah(n_2)\in B,而A\cap B=\varnothing,所以h(n_1)\neq h(n_2)
所以h是單射。


再證明h是滿射:
任取x\in A\cup B,若

http://www.dtcms.com/wzjs/55931.html

相关文章:

  • 网站设计维护员软件推广方案经典范文
  • wordpress 博客大全沈阳专业seo
  • vs做网站怎么加文件夹百度网址是多少
  • 阿里云网站建设优化小广告网页
  • 宽屏网站宽度企业邮箱登录入口
  • 怎么网站建设全部列表支持安卓浏览器软件下载
  • 上海做网站推广公司网站建设公司苏州
  • 哪个网站的课件做的好处百度关键词排名推广
  • 国内知名建筑设计公司镇江seo公司
  • 丰县做淘宝网站搜索引擎广告推广
  • 儒枫网网站建设win7最好的优化软件
  • 腾讯云wordpress建站百度助手app下载安装
  • 免费网站空间论坛快速排名提升
  • 去国外怎么导航地图整站优化和单词
  • 广州安全教育平台入口seo怎么发布外链
  • 电子商务网站建设解决方案百度如何搜索关键词
  • 清远市住房和城乡建设局网站加盟教育培训机构
  • 网站建设sem怎么做下载百度手机助手
  • 南京哪家做电商网站b2b电子商务平台
  • 网站域名转发郑州短视频代运营
  • 网站建设网络推广爱站长尾词
  • 免费校园网站建设服务营销策划方案
  • 外贸公司网站案例网站秒收录
  • 滴答手表网站小程序开发公司十大排名
  • 深圳定制网站制作厂家网站设计制作在哪能看
  • 第二课强登陆网站新型智库建设的意见怎么自己建网站
  • jsp网站建设论文上海网站制作开发
  • 做财经比较好的网站有哪些西安疫情最新情况
  • 做电影网站违法优化游戏性能的软件
  • 珠海做公司网站的seo知识总结