当前位置: 首页 > wzjs >正文

优质的网站网站域名怎么选择

优质的网站,网站域名怎么选择,海外免费云服务器,wordpress拖拽式主题虚拟环境 首先用 anaconda 创建虚拟环境 根据自己需求创建一个虚拟环境 一个环境名叫 yolov11-py-3-8 就创建好了,后续的 yolov11 就会以这个环境去做深度学习(这里不建议把环境的 py 版本设置到最新,设置个 3.8 或者 3.10 完全够用了 &am…

虚拟环境  

首先用 anaconda 创建虚拟环境

根据自己需求创建一个虚拟环境

 一个环境名叫 yolov11-py-3-8 就创建好了,后续的 yolov11 就会以这个环境去做深度学习(这里不建议把环境的 py 版本设置到最新,设置个 3.8 或者 3.10 完全够用了 )

 下一步就是按照 cuda 以及 cudnn 了,首先要先查清楚自己电脑支持什么配置

下载 cuda 

右键电脑桌面进入 NVIDIA 控制面板

右键电脑桌面进入 NVIDIA 控制面板

 进入左下角系统信息

这里看到驱动程序版本是:561.19

进入 NVIDIA 官网文档 : 1. Why CUDA Compatibility — CUDA Compatibility,查一下最大兼容那个版本的 cuda,561.19 最大兼容的是 12.3 ,那么我们安装的 cuda 版本就一定不能超过 12.3

我安装的是 12. 1 的 cuda

进入官网:CUDA Toolkit 12.8 Update 1 Downloads | NVIDIA Developer,安装适合电脑的 cuda,直接安装在 cuda 的默认路径即可 

安装完成之后先检查一下 cude 版本,你可以在 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA 目录下查看已安装的 CUDA 版本。例如(这是我电脑的):

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.5
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1

由于电脑在最开始就自带了一个 11.5 的 cuda,那么现在系统默认使用的还是 11.5,这时我们只需要配置一下 12.1 的环境即可

配置 cuda 环境

进入高级系统设置 -> 环境变量 -> path(根据自己安装的位置找)

如果你实在找不到自己 cuda 的安装路径的话其实也很简单:在终端输入:where nvcc

你就会看见你所有的 cuda 的位置 

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\libnvvp

到 path 当中并且要在 11.5 的前面

最后可以去终端检查一下 ,输入:nvcc --version

发现是 cuda 版本是 12.1,这样的话 cuda 的环境配置就搞好了,下一步就是根据 cuda 版本,安装一下cudnn

安装 cudnn

进入官网 :cuDNN Archive | NVIDIA Developer 找到对应版本的 cudnn 下载之后解压

把这个文件直接复制到 cuda 路径当中(可以改文件名也可以不改)

这样的话 cudnn 也安装完成了,最后就是下载对应版本的 GPU 版 Pytorch

Pytorch安装

首先打开 conda ,输入conda activate yolov11-py-3-8(这里替换你的虚拟环境名称)

忘记自己环境名称的输入 conda env list 就能查询了

按照与 cuda 12.1 兼容的 Pytorch 版本,运行以下命令下载 Pytorch:

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia

 

 下载好后进入 Pycharm 随便写一个调试程序

# -*- coding: utf-8 -*-
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
import torchimport torch# 检查 CUDA 是否可用
print(torch.cuda.is_available())  # 应该返回 True# 检查当前 GPU 设备
print(torch.cuda.current_device())  # 应该返回 0(默认 GPU 设备)# 检查 GPU 名称
print(torch.cuda.get_device_name(0))  # 例如:NVIDIA GeForce RTX 4060# 检查 cuDNN 版本
print(torch.backends.cudnn.version())  # 例如:8900(表示 cuDNN 8.9.0)

这样的话就成功安装 Pytorch(GPU)版了,最后去官网导入 yolov11 到你的项目即可GitHub - ultralytics/ultralytics: Ultralytics YOLO11 🚀

最后展示一下

 这样的话一个 yolov11 就配置好了

http://www.dtcms.com/wzjs/558851.html

相关文章:

  • 郑州手机网站建设公司2008r2网站建设
  • 做服务器的网站的模板浙江龙泉建设局网站
  • 全国高校校园网站建设与发展高级研修班公司网站没做301怎么做301
  • 咨询公司网站源码wordpress 4.9.5 漏洞
  • 代码网站开发太原吧
  • 中文单页面网站模板互联网招商项目
  • 高级网站开发工程师工资个人网站要不要备案
  • 重庆网站推广的网站汕头网站制作后缀
  • 合肥网站建设新浪营销wordpress会员介绍页
  • 大庆做流产油城女子网站商城网站建设公司电话
  • 凡科网站建设怎么样上国外网站 dns
  • 库尔勒网站建设哪家好html5个人网页完整代码
  • wordpress网站前台打开慢关键词优化排名软件
  • 建筑设计招标网站腾讯广告平台
  • 网站建站网站字节跳动小程序开发教程
  • 百度网站怎么做的wampserver 架设wordpress 主题错误
  • 泰安哪里做网站建设工程施工合同司法解释一
  • 许昌住房和城乡建设局网站谁告诉你j2ee是做网站的
  • 手机网站应该怎么做新乡做网站哪家好
  • 高职思政主题网站建设作用一家专业做导购的网站
  • 应用公园怎么样兰州seo排名
  • 做网站多少钱特惠西宁君博swordpress 春菜
  • 品牌网站建设定制网站建设技术 翻译
  • 大兴网站开发备案时暂时关闭网站
  • 网站建设专家推荐乐云seowordpress美化背景
  • 网站外链建设布局网站开发资金投入
  • 开封网站建设流程与步骤seo优化博客
  • ftp网站怎么建立wordpress注册邮件自定义
  • 西宁网站建设推广4399的经典小游戏
  • 查看网站是否做百度推广wordpress目录分析