当前位置: 首页 > wzjs >正文

网站首页需求域名服务器ip查询网站

网站首页需求,域名服务器ip查询网站,环球军事头条,网站推广岗位职责文章目录 介绍代码参考 介绍 高通量技术的进步使得能够大规模获取各种类型的组学数据。每种组学都提供了对潜在生物过程的局部视图。整合多个组学层将有助于实现更准确的诊断。然而,组学数据的复杂性要求采用能够捕捉复杂关系的方法。实现这一目标的一种方式是利用…

在这里插入图片描述

文章目录

    • 介绍
    • 代码
    • 参考

介绍

高通量技术的进步使得能够大规模获取各种类型的组学数据。每种组学都提供了对潜在生物过程的局部视图。整合多个组学层将有助于实现更准确的诊断。然而,组学数据的复杂性要求采用能够捕捉复杂关系的方法。实现这一目标的一种方式是利用不同组学之间已知的调控联系,这有助于构建更完善的多模态表示。

在本文中,我们提出了 CrossAttOmics 这种基于跨注意力机制的新型深度学习架构,用于多组学整合。每个模态都通过其特定的编码器被投影到一个低维空间中。具有已知调控关系的模态之间的相互作用是在特征表示空间中通过跨注意力计算出来的。本文中进行的不同实验的结果表明,我们的模型能够通过利用多个模态之间的相互作用准确预测癌症的类型。当有少量配对训练示例时,CrossAttOmics 比其他方法表现更优。我们的方法可以与诸如 LRP 等归因方法相结合,以确定哪些相互作用是最为重要的。

在这里插入图片描述

代码

https://github.com/Sanofi-Public/CrossAttOmics

在这里插入图片描述

from functools import reduce
from itertools import chain
from typing import Dict, Iterator, List, Tupleimport numpy as np
import torch
from einops.layers.torch import EinMix, Rearrange
from torch import Tensor, nnclass FullyConnectedLayer(nn.Module):def __init__(self, input_dim: int, output_dim: int, p_dropout: float = 0.0):super().__init__()self.linear = nn.Linear(input_dim, output_dim, bias=False)self.dropout = nn.Dropout(p_dropout)self.act_fn = nn.ReLU()self.batch_norm = nn.BatchNorm1d(output_dim)def forward(self, x: Tensor) -> Tensor:x = self.linear(x)x = self.act_fn(self.batch_norm(x))return self.dropout(x)@propertydef out_features(self) -> int:return self.linear.out_featuresclass FullyConnectedNetwork(nn.Module):def __init__(self, FC_layers: List[FullyConnectedLayer]) -> None:super().__init__()self.layers = nn.Sequential(*FC_layers)def forward(self, x: Tensor) -> Tensor:return self.layers(x)@propertydef out_features(self) -> int:return self.layers[-1].out_featuresclass GroupInteraction(nn.Module):def __init__(self,group_size: int,num_heads: int,) -> None:super().__init__()self.attention = MultiHeadAttentionWrapper(embed_dim=group_size,num_heads=num_heads,k_dim=None,v_dim=None,)self.norm_layer = nn.LayerNorm(group_size)def forward(self, x: Tensor) -> Tensor:z = self.attention(query=x, key=x, value=x)z = z + xreturn self.norm_layer(z)class IndexGroupedFCN(nn.Module):__constants__ = ["in_features", "out_features"]weight: Tensordef __init__(self,in_features: int,out_features: int,n_group: int,group_size: int,group_spec: List[Tensor],proj_dim: List[List[int]],bias: bool = True,) -> None:super().__init__()assert len(group_spec) == n_groupassert n_group * group_size == out_featuresself.n_group = n_grouplayer_dim = [[idx_grp_in.size(0)] + grp_proj_dimfor idx_grp_in, grp_proj_dim in zip(group_spec, proj_dim)]self.list_linear = nn.ModuleList([nn.Sequential(*[nn.Linear(grp_dim[i], grp_dim[i + 1], bias=bias)for i in range(0, len(grp_dim) - 1)])for grp_dim in layer_dim])for i in range(n_group):self.register_buffer(f"index_group_in_{i}", group_spec[i])def index_group_i(self, i: int) -> Tensor:return self.__getattr__(f"index_group_in_{i}")def index_groups(self) -> Iterator[Tensor]:for i in range(self.n_group):yield self.__getattr__(f"index_group_in_{i}")def forward(self, x: Tensor) -> Tensor:return torch.cat([module(x[:, idx_lst])for idx_lst, module in zip(self.index_groups(), self.list_linear)],1,)class AttOmicsInputLayer(nn.Module):def __init__(self,in_features: int,n_group: int,group_size: int,num_heads: int,group_spec: List[Tensor],group_proj_dim: List[List[int]],flatten_output: bool,) -> None:super().__init__()self.flatten_output = flatten_outputself.n_group = n_groupself.group_size = group_sizeself.grouped_dim = n_group * group_sizeself.grouped_mlp = IndexGroupedFCN(in_features=in_features,out_features=self.grouped_dim,n_group=n_group,group_size=group_size,group_spec=group_spec,proj_dim=group_proj_dim,)self.interaction = GroupInteraction(group_size=group_size, num_heads=num_heads)def forward(self, x: Tensor) -> Tensor:# N: Batch size, G: number of groups, s: size of a group# Input dim: Nxd (d: number of input features )x = self.grouped_mlp(x)  # dim: Nx(G*s)x = x.view(-1, self.n_group, self.group_size)  # dim: NxGxsx = self.interaction(x)  # dim: NxGxsif self.flatten_output:x = x.view(-1, self.grouped_dim)  # dim: Nx(G*s)return x@propertydef out_features(self) -> int:_out_features = (self.n_group, self.group_size)if self.flatten_output:_out_features = reduce((lambda x, y: x * y), _out_features)return _out_featuresclass AttOmicsLayer(nn.Module):def __init__(self,in_features: int,n_group: int,in_group_size: int,out_group_size: int,num_heads: int,flatten_output: bool,) -> None:super().__init__()self.flatten_output = flatten_outputself.n_group = n_groupself.out_group_size = out_group_sizeself.grouped_dim = n_group * out_group_size# Transform each group with a MLPself.grouped_mlp = EinMix("B (G s) -> B (G ss)",weight_shape="G ss s",bias_shape="G ss",G=n_group,ss=out_group_size,s=in_group_size,)self.interaction = GroupInteraction(group_size=out_group_size, num_heads=num_heads)def forward(self, x: Tensor) -> Tensor:# N: Batch size, G: number of groups, s: size of a group# Input dim: Nxd (d: number of input features )x = self.grouped_mlp(x)  # dim: Nx(G*s)x = x.view(-1, self.n_group, self.out_group_size)  # dim: NxGxsx = self.interaction(x)  # dim: NxGxsif self.flatten_output:x = x.view(-1, self.grouped_dim)  # dim: Nx(G*s)return x@propertydef out_features(self) -> int:_out_features = (self.n_group, self.out_group_size)if self.flatten_output:_out_features = reduce((lambda x, y: x * y), _out_features)return _out_featuresdef random_grouping(in_features: int, proj_size: int, n_group: int
) -> Tuple[List[Tensor], str, List[List[int]]]:idx_in = torch.randperm(in_features, dtype=torch.long)chunk_sizes = (idx_in.size(0) // n_group) + (np.arange(n_group) < (idx_in.size(0) % n_group))idx_in = idx_in.split(chunk_sizes.tolist(), dim=0)idx_in = [idx.sort().values for idx in idx_in]group_name = [f"Random {i}" for i in range(len(idx_in))]return idx_in, group_name, [[proj_size] for _ in range(n_group)]class AttOmicsEncoder(nn.Module):def __init__(self,in_features: int,n_group: int,group_size_list: List[int],num_heads: int,flatten_output: bool,) -> None:super().__init__()n_layers = len(group_size_list)grouped_dim = [g_size * n_group for g_size in group_size_list]connectivity = random_grouping(in_features=in_features, proj_size=group_size_list[0], n_group=n_group)input_layer = AttOmicsInputLayer(in_features=in_features,n_group=n_group,group_size=group_size_list[0],group_spec=connectivity[0],num_heads=num_heads,group_proj_dim=connectivity[2],flatten_output=flatten_output if n_layers == 1 else True,)attOmics_layers = [input_layer]for i in range(1, n_layers):attOmics_layers.append(AttOmicsLayer(in_features=grouped_dim[i - 1],n_group=n_group,in_group_size=group_size_list[i - 1],out_group_size=group_size_list[i],num_heads=num_heads,flatten_output=flatten_output if (i == (n_layers - 1)) else True,))self.attOmics_layers = nn.Sequential(*attOmics_layers)def forward(self, x: Tensor) -> Tensor:return self.attOmics_layers(x)@propertydef out_features(self) -> int:return self.attOmics_layers[-1].out_featuresclass MultiHeadAttentionWrapper(nn.Module):def __init__(self,embed_dim: int,num_heads: int,k_dim: int | None = None,v_dim: int | None = None,) -> None:super().__init__()if k_dim is None:k_dim = embed_dimif v_dim is None:v_dim = embed_dimself.to_q = nn.Linear(embed_dim, embed_dim, bias=False)self.to_k = nn.Linear(k_dim, embed_dim, bias=False)self.to_v = nn.Linear(v_dim, embed_dim, bias=False)self.to_out = nn.Linear(embed_dim, embed_dim, bias=False)self.create_heads = Rearrange("b n (h d) -> b h n d", h=num_heads)self.fuse_heads = Rearrange("b h n d -> b n (h d)")self.attention_fn = nn.functional.scaled_dot_product_attentiondef forward(self, query: Tensor, key: Tensor, value: Tensor) -> Tensor:q = self.to_q(query)q = self.create_heads(q)k = self.to_k(key)k = self.create_heads(k)v = self.to_v(value)v = self.create_heads(v)x = self.attention_fn(q, k, v, dropout_p=0)x = self.fuse_heads(x)x = self.to_out(x)return xclass CrossAttentionBlock(nn.Module):def __init__(self,embed_dim: int,num_heads: int,k_dim: int,v_dim: int,) -> None:super().__init__()self.norm = nn.LayerNorm(embed_dim)self.attention = MultiHeadAttentionWrapper(embed_dim=embed_dim,num_heads=num_heads,k_dim=k_dim,v_dim=v_dim,)def forward(self, source: Tensor, target: Tensor) -> Tensor:z = self.attention(query=target,key=source,value=source,)z = z + targetreturn self.norm(z)class SelfAttentionBlock(nn.Module):def __init__(self, embed_dim: int, num_heads: int) -> None:super().__init__()self.norm = nn.LayerNorm(embed_dim)self.attention = MultiHeadAttentionWrapper(embed_dim=embed_dim,num_heads=num_heads,k_dim=None,v_dim=None,)def forward(self, x: Tensor) -> Tensor:z = self.attention(query=x, key=x, value=x)z = z + xreturn self.norm(z)class OmicsInteraction(nn.Module):def __init__(self,omics: List[str],interaction_graph: Dict[str, List[str]],cross_attention_blocks: Dict[str, CrossAttentionBlock],self_attention_blocks: Dict[str, SelfAttentionBlock] | None = None,add_unimodal_branches: bool = True,add_unimodal_to_multimodal: bool = False,) -> None:super().__init__()self.add_unimodal_branches = add_unimodal_branchesself.add_unimodal_to_multimodal = add_unimodal_to_multimodalself.omics = omicsself.interaction_graph = interaction_graphself.not_target_modalities = sorted(set(omics)- set(interaction_graph.keys())  # interaction graph is a dict, keys are target modalities)self.cross_layers = nn.ModuleDict(cross_attention_blocks)  # module dict, key is a str: source-_-targetself.use_SA = Falseif self_attention_blocks:self.use_SA = Trueself.sa_layers = nn.ModuleDict(self_attention_blocks)  # dict too, modality: layerself.flatten_group = Rearrange("b G s -> b (G s)")def __apply_cross_attention(self, target, source, ca_key):return self.cross_layers[ca_key](target=target, source=source)def __apply_self_attention(self, z):# Dict[str, Tensor[N,G,s]]return {omics: self.sa_layers[omics](x_target) for omics, x_target in z.items()}def __handle_not_a_target_modalities(self, x, z):if self.add_unimodal_branches:not_target_mod = map(x.get, self.not_target_modalities)z = torch.cat([self.flatten_group(zz)for zz in chain(z.values(),not_target_mod,)],dim=1,)else:z = torch.cat([self.flatten_group(zz) for zz in z.values()], dim=1)return zdef forward(self, x: Dict[str, Tensor]) -> Tensor:# x: Dict[str, Tensor[N,G,s]]z = {}for target, sources in self.interaction_graph.items():cross_att_list = []for source in sources:ca_key = source + "-_-" + targetca_res = self.__apply_cross_attention(x[target], x[source], ca_key)cross_att_list.append(ca_res)if self.add_unimodal_to_multimodal:cross_att_list.append(x[target])z[target] = torch.cat(cross_att_list, dim=1)if self.use_SA:z = self.__apply_self_attention(z)z = self.__handle_not_a_target_modalities(x, z)return zclass AttOmics(nn.Module):nice_name: str = "AttOmics"color: str = "#b80058"def __init__(self,encoder: AttOmicsEncoder,head: FullyConnectedNetwork,num_classes: int,) -> None:super().__init__()self.encoder = encoderself.head = headin_dim = head.out_featuresself.classifier = nn.Linear(in_dim, num_classes)def forward(self, x: Tensor) -> Tensor:x = self.encoder(x)x = self.head(x)return self.classifier(x)class CrossAttOmics(nn.Module):nice_name: str = "CrossAttOmics"color: str = "#ebac23"def __init__(self,num_classes: Dict[str, int],modalities_encoders: Dict[str, nn.Module],fusion: OmicsInteraction,multimodal_encoder: FullyConnectedNetwork,) -> None:super().__init__()self.modalities_encoders = nn.ModuleDict(modalities_encoders)self.fusion = fusionself.multimodal_encoder = multimodal_encoderin_dim = multimodal_encoder.out_featuresself.classifier = nn.Linear(in_dim, num_classes)def forward(self, x: Dict[str, Tensor]) -> Tensor:x = {omics: self.modalities_encoders[omics](x_omics)for omics, x_omics in x.items()}x = self.fusion(x)x = self.multimodal_encoder(x)return self.classifier(x)

参考

  • CrossAttOmics: multiomics data integration with cross-attention
  • https://github.com/Sanofi-Public/CrossAttOmics
http://www.dtcms.com/wzjs/53063.html

相关文章:

  • qq炫舞做字网站郑州竞价托管代运营
  • 做产品目录设计用什么网站好成都seo排名
  • 政府网站开发方式如何做营销推广
  • 怎么开网店?优化大师软件大全
  • 山东做网站的公司有哪些百度推广网站平台
  • 做网站建设要学多久电子营销主要做什么
  • 网站设计的六个因素网络营销师月薪
  • 手机端网站建站手册廊坊seo推广
  • 广东网站建设公司968seo教程论坛
  • cpa诱导网站怎么做企业网络营销策划
  • 科技有限公司官网短视频矩阵seo系统源码
  • 外贸b2b和b2c是什么意思seo优化上首页
  • 泸州免费做网站重庆网站关键词排名优化
  • 外贸综合服务网站建设软文案例400字
  • 做外贸网站 深圳好看的网站ui
  • 网页模版比较出名的网站成都seo优化排名公司
  • 网站框架图怎么做知乎营销平台
  • 企业网站 免费今日国内新闻大事20条
  • 设计师个人作品集网站广州营销网站建设靠谱
  • 网站建设经典教材郑州百度推广代运营
  • 百度云分享tp响应式网站开发拓客app下载
  • 网站增加聊天seo优化顾问服务
  • 成都h5模板建站网站seo关键词排名
  • vs动态网站开发seo是付费还是免费推广
  • 海南澄迈住房与建设厅网站百家号seo怎么做
  • 用自己电脑做外网访问网站武汉排名seo公司
  • 手机网站建设要多少钱在线培训平台有哪些
  • 做banner网站独立站seo是什么意思
  • 专业做网站建设 昆山优化营商环境建议
  • 四合一营销型网站网站源码下载