当前位置: 首页 > wzjs >正文

扁平图标网站怎么做一个自己的网页

扁平图标网站,怎么做一个自己的网页,跨境电商平台有哪些分类,有没有女的做任务的网站神经网络原理 激活函数 引入非线性: 这是最核心、最重要的作用! 如果没有激活函数(或者使用线性激活函数f(x) x),无论神经网络有多少层,其整体计算仍然等价于一个单层的线性变换 (y Wx b)。 梯度下降…

神经网络原理

激活函数
 

引入非线性: 这是最核心、最重要的作用! 如果没有激活函数(或者使用线性激活函数f(x) = x),无论神经网络有多少层,其整体计算仍然等价于一个单层的线性变换 (y = Wx + b)。

 

梯度下降

 找到能使损失函数值最小化的模型参数

    1. 初始化: 随机选择一个起点(给模型参数赋初值)。

    2. 计算梯度: 在当前参数位置,计算损失函数关于所有参数的梯度。这个梯度告诉你“哪个方向是当前最陡的上坡”。

    3. 沿负梯度方向更新: 向负梯度方向迈出一小步(更新参数)。迈出的步长由学习率控制。

      • 新参数 = 旧参数 - 学习率 * 梯度

    4. 重复: 不断重复步骤 2 和 3,计算新位置的梯度,再次沿负梯度方向更新参数。

      核心思想: 通过迭代地计算梯度并沿着最陡下降方向(负梯度方向)调整参数,逐步逼近损失函数的最小值点。

学习率的重要性:

太大:步长过大,可能会“跨过”谷底,甚至导致损失值震荡或发散(在山谷两边来回跳)。

太小:步长过小,收敛速度极慢,可能需要非常多的步骤才能到达谷底,甚至卡在不是最低点的平坦区域(局部极小点或鞍点)。


 

损失函数 

  • 均方误差 (MSE): L = 1/N * Σ(ŷ_i - y_i)²。最常用于回归问题(预测连续值)。惩罚大的误差很重。

  • 平均绝对误差 (MAE): L = 1/N * Σ|ŷ_i - y_i|。也用于回归。对异常值比MSE更鲁棒(不那么敏感)。

  • 交叉熵损失 (Cross-Entropy Loss): 这是分类问题(尤其是多分类)的标准损失函数

    • 二分类交叉熵: L = -[y * log(ŷ) + (1 - y) * log(1 - ŷ)] (y是0或1的真实标签,ŷ是预测为1的概率)。

    • 多分类交叉熵: L = -Σ y_i * log(ŷ_i) (y_i是真实标签的one-hot编码,ŷ_i是模型预测的对应类别的概率)。它衡量预测概率分布与真实概率分布(one-hot)之间的差异。

  • Hinge Loss (合页损失): 常用于支持向量机(SVM)和某些神经网络分类任务,尤其是最大间隔分类。

优化器

它利用损失函数关于模型参数的梯度信息,决定如何调整参数以最小化损失函数

  1. 你构建一个神经网络结构(输入层、隐藏层、输出层,定义神经元和连接)。

  2. 选择一个合适的损失函数来衡量预测的好坏。

  3. 选择一个优化器(如Adam)来指导参数更新的策略。

  4. 将一批数据输入网络,进行前向传播得到预测。

  5. 计算损失

  6. 使用反向传播计算损失函数关于所有权重/偏置(参数)的梯度

  7. 优化器利用这些梯度,按照其特定的更新规则(如Adam的动量+自适应学习率)更新网络参数

  8. 重复步骤4-7。在这个过程中,参数沿着损失函数的负梯度方向逐步调整(梯度下降思想),使得损失不断减小,预测越来越准。激活函数则在每一层的神经元内部施加非线性变换,赋予网络强大的拟合能力。

from gettext import npgettext
from socket import NI_NAMEREQD
import torch
torch.cuda
if torch.cuda.is_available():print("CUDA可用")device_count = torch.cuda.device_count()print(f"CUDA设备数量: {device_count}")curent_device=torch.cuda.current_device()print(f"当前使用的CUDA设备: {curent_device}")device_name = torch.cuda.get_device_name(curent_device)print(f"当前CUDA设备名称: {device_name}"    )
else:print("CUDA不可用")from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np
iris = load_iris()
X= iris.data
y= iris.target
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=42)
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)from sklearn.preprocessing import MinMaxScaler
scaler= MinMaxScaler()
X_train = scaler,fit_transform(X_train)
X_test = scaler.transform(X_test)X_train = torch.FloatTensor(X_train)
X_test = torch.FloatTensor(X_test)
y_train = torch.LongTensor(y_train)
y_test = torch.LongTensor(y_test)import torch 
import torch.nn as nn
import torch.optim as optimclass MLP(nn.Module):def __init__(self):super(MLP,self).__init__()self.fc1 = nn.Linear(4,10)self.relu = nn.ReLU()self.fc2 = nn.Linear(10,3)def forward(self,x):out= self.fc1(x)out = self.relu(out)out = self.fc2(out)return out
model = MLP()criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr=0.01)num_epochs = 20000
losses = []
for epoch in range(num_epochs):outputs = model.forward(X_train)loss= criterion(outputs,y_train)optimizer.zero_grad()loss.backward()optimizer.step()losses.append(loss.item())if (epoch+1) % 100 ==0:print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}")import matplotlib.pyplot as plt
plt.plot (range{num_epochs},losses)
plt.xlabel('Epoch')
plt.ylable('Loss')
plt.title('Training Loss overe Epochs')
plt.show()

@浙大疏锦行

http://www.dtcms.com/wzjs/509130.html

相关文章:

  • 清丰网站建设费用2023年6月份又封城了
  • dw怎么导入网站模板中国十大互联网公司
  • 做外贸用什么视频网站好淘宝标题优化网站
  • 合肥知名网站制作公司外贸b2b平台都有哪些网站
  • 重庆网站平台建设百度广告大全
  • 手机自建房设计软件app上海有实力的seo推广咨询
  • 东莞网站制作个性化html网页制作步骤
  • 网站建设的毕业论文seminar什么意思中文
  • 创建网站的价格网络推广竞价外包
  • 做网站多少钱一个海口做网站的公司
  • 平台类网站做多久搜索引擎和浏览器
  • 徐州教育平台网站建设金泉网做网站多少钱
  • 蚌埠网站关键词优化seo怎么搞
  • 衡水做wap网站的公司百度网页版网址
  • 网站解析域名时间如何制作网页
  • 赤峰企业网站建设软文世界平台
  • 酒店网站制作网站流量指标有哪些
  • 有自己的网站怎么做淘宝客北京搜索优化排名公司
  • 南浔区住房城乡建设局网站产品宣传
  • 网站做一排横图淘宝指数查询入口
  • 上海丝芭文化传媒有限公司网站优化推广方法
  • 辖网站建设办公软件速成培训班
  • 网站集群建设参数网站关键词如何优化上首页
  • 品牌网站建设毛尖2域名信息查询
  • 已经有网站域名如何做网页济南网络优化哪家专业
  • 济南seo优化外包优质的seo网站排名优化软件
  • 网站开发计划表营销推广怎么做
  • 做网站需要备案动态网站设计
  • 河北提供网站建设公司哪家好十大品牌营销策划公司
  • 做国际网站多少钱东莞最新消息今天