当前位置: 首页 > wzjs >正文

建设大学智慧党建网站关于手机的软文营销

建设大学智慧党建网站,关于手机的软文营销,电子商务网站模板,网络行为管理系统论文链接:https://arxiv.org/abs/2502.12524 代码链接:https://github.com/sunsmarterjie/yolov12 文章摘要: 长期以来,增强YOLO框架的网络架构一直至关重要,但一直专注于基于cnn的改进,尽管注意力机制在建…


论文链接:https://arxiv.org/abs/2502.12524

代码链接:https://github.com/sunsmarterjie/yolov12


 文章摘要:

        长期以来,增强YOLO框架的网络架构一直至关重要,但一直专注于基于cnn的改进,尽管注意力机制在建模能力方面已被证明具有优越性。这是因为基于注意力的模型无法匹配基于cnn的模型的速度。本文提出了一种以注意力为中心的YOLO框架,即YOLOv12,与之前基于cnn的YOLO框架的速度相匹配,同时利用了注意力机制的性能优势。YOLOv12在精度和速度方面超越了所有流行的实时目标检测器。例如,YOLOv12-N在T4 GPU上以1.64ms的推理延迟实现了40.6% mAP,以相当的速度超过了高级的YOLOv10-N / YOLOv11-N 2.1%/1.2% mAP。这种优势可以扩展到其他模型规模。YOLOv12还超越了改善DETR的端到端实时检测器,如RT-DETR /RT-DETRv2: YOLOv12- s比RT-DETR- r18 / RT-DETRv2-r18运行更快42%,仅使用36%的计算和45%的参数。更多的比较见图1。

总结:作者围提出YOLOv12目标检测模型,测试结果更快、更强,围绕注意力机制进行创新。


一、创新点总结

        作者构建了一个以注意力为核心构建了YOLOv12检测模型,主要创新点创新点如下:

        1、提出一种简单有效的区域注意力机制(area-attention)。

        2、提出一种高效的聚合网络结构R-ELAN。

        作者提出的area-attention代码如下:

class AAttn(nn.Module):"""Area-attention module with the requirement of flash attention.Attributes:dim (int): Number of hidden channels;num_heads (int): Number of heads into which the attention mechanism is divided;area (int, optional): Number of areas the feature map is divided. Defaults to 1.Methods:forward: Performs a forward process of input tensor and outputs a tensor after the execution of the area attention mechanism.Examples:>>> import torch>>> from ultralytics.nn.modules import AAttn>>> model = AAttn(dim=64, num_heads=2, area=4)>>> x = torch.randn(2, 64, 128, 128)>>> output = model(x)>>> print(output.shape)Notes: recommend that dim//num_heads be a multiple of 32 or 64."""def __init__(self, dim, num_heads, area=1):"""Initializes the area-attention module, a simple yet efficient attention module for YOLO."""super().__init__()self.area = areaself.num_heads = num_headsself.head_dim = head_dim = dim // num_headsall_head_dim = head_dim * self.num_headsself.qkv = Conv(dim, all_head_dim * 3, 1, act=False)self.proj = Conv(all_head_dim, dim, 1, act=False)self.pe = Conv(all_head_dim, dim, 7, 1, 3, g=dim, act=False)def forward(self, x):"""Processes the input tensor 'x' through the area-attention"""B, C, H, W = x.shapeN = H * Wqkv = self.qkv(x).flatten(2).transpose(1, 2)if self.area > 1:qkv = qkv.reshape(B * self.area, N // self.area, C * 3)B, N, _ = qkv.shapeq, k, v = qkv.view(B, N, self.num_heads, self.head_dim * 3).split([self.head_dim, self.head_dim, self.head_dim], dim=3)# if x.is_cuda:#     x = flash_attn_func(#         q.contiguous().half(),#         k.contiguous().half(),#         v.contiguous().half()#     ).to(q.dtype)# else:q = q.permute(0, 2, 3, 1)k = k.permute(0, 2, 3, 1)v = v.permute(0, 2, 3, 1)attn = (q.transpose(-2, -1) @ k) * (self.head_dim ** -0.5)max_attn = attn.max(dim=-1, keepdim=True).valuesexp_attn = torch.exp(attn - max_attn)attn = exp_attn / exp_attn.sum(dim=-1, keepdim=True)x = (v @ attn.transpose(-2, -1))x = x.permute(0, 3, 1, 2)v = v.permute(0, 3, 1, 2)if self.area > 1:x = x.reshape(B // self.area, N * self.area, C)v = v.reshape(B // self.area, N * self.area, C)B, N, _ = x.shapex = x.reshape(B, H, W, C).permute(0, 3, 1, 2)v = v.reshape(B, H, W, C).permute(0, 3, 1, 2)x = x + self.pe(v)x = self.proj(x)return x

         结构上与YOLOv11里C2PSA中的模式相似,使用了Flash-attn进行运算加速。Flash-attn安装时需要找到与cuda、torch和python解释器对应的版本,Windows用户可用上述代码替换官方代码的AAttn代码,无需安装Flash-attn。

        R-ELAN结构如下图所示:

        作者基于该结构构建了A2C2f模块,与C2f/C3K2模块结构类似,代码如下:


class AAttn(nn.Module):"""Area-attention module with the requirement of flash attention.Attributes:dim (int): Number of hidden channels;num_heads (int): Number of heads into which the attention mechanism is divided;area (int, optional): Number of areas the feature map is divided. Defaults to 1.Methods:forward: Performs a forward process of input tensor and outputs a tensor after the execution of the area attention mechanism.Examples:>>> import torch>>> from ultralytics.nn.modules import AAttn>>> model = AAttn(dim=64, num_heads=2, area=4)>>> x = torch.randn(2, 64, 128, 128)>>> output = model(x)>>> print(output.shape)Notes: recommend that dim//num_heads be a multiple of 32 or 64."""def __init__(self, dim, num_heads, area=1):"""Initializes the area-attention module, a simple yet efficient attention module for YOLO."""super().__init__()self.area = areaself.num_heads = num_headsself.head_dim = head_dim = dim // num_headsall_head_dim = head_dim * self.num_headsself.qkv = Conv(dim, all_head_dim * 3, 1, act=False)self.proj = Conv(all_head_dim, dim, 1, act=False)self.pe = Conv(all_head_dim, dim, 7, 1, 3, g=dim, act=False)def forward(self, x):"""Processes the input tensor 'x' through the area-attention"""B, C, H, W = x.shapeN = H * Wqkv = self.qkv(x).flatten(2).transpose(1, 2)if self.area > 1:qkv = qkv.reshape(B * self.area, N // self.area, C * 3)B, N, _ = qkv.shapeq, k, v = qkv.view(B, N, self.num_heads, self.head_dim * 3).split([self.head_dim, self.head_dim, self.head_dim], dim=3)# if x.is_cuda:#     x = flash_attn_func(#         q.contiguous().half(),#         k.contiguous().half(),#         v.contiguous().half()#     ).to(q.dtype)# else:q = q.permute(0, 2, 3, 1)k = k.permute(0, 2, 3, 1)v = v.permute(0, 2, 3, 1)attn = (q.transpose(-2, -1) @ k) * (self.head_dim ** -0.5)max_attn = attn.max(dim=-1, keepdim=True).valuesexp_attn = torch.exp(attn - max_attn)attn = exp_attn / exp_attn.sum(dim=-1, keepdim=True)x = (v @ attn.transpose(-2, -1))x = x.permute(0, 3, 1, 2)v = v.permute(0, 3, 1, 2)if self.area > 1:x = x.reshape(B // self.area, N * self.area, C)v = v.reshape(B // self.area, N * self.area, C)B, N, _ = x.shapex = x.reshape(B, H, W, C).permute(0, 3, 1, 2)v = v.reshape(B, H, W, C).permute(0, 3, 1, 2)x = x + self.pe(v)x = self.proj(x)return xclass ABlock(nn.Module):"""ABlock class implementing a Area-Attention block with effective feature extraction.This class encapsulates the functionality for applying multi-head attention with feature map are dividing into areasand feed-forward neural network layers.Attributes:dim (int): Number of hidden channels;num_heads (int): Number of heads into which the attention mechanism is divided;mlp_ratio (float, optional): MLP expansion ratio (or MLP hidden dimension ratio). Defaults to 1.2;area (int, optional): Number of areas the feature map is divided.  Defaults to 1.Methods:forward: Performs a forward pass through the ABlock, applying area-attention and feed-forward layers.Examples:Create a ABlock and perform a forward pass>>> model = ABlock(dim=64, num_heads=2, mlp_ratio=1.2, area=4)>>> x = torch.randn(2, 64, 128, 128)>>> output = model(x)>>> print(output.shape)Notes: recommend that dim//num_heads be a multiple of 32 or 64."""def __init__(self, dim, num_heads, mlp_ratio=1.2, area=1):"""Initializes the ABlock with area-attention and feed-forward layers for faster feature extraction."""super().__init__()self.attn = AAttn(dim, num_heads=num_heads, area=area)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = nn.Sequential(Conv(dim, mlp_hidden_dim, 1), Conv(mlp_hidden_dim, dim, 1, act=False))self.apply(self._init_weights)def _init_weights(self, m):"""Initialize weights using a truncated normal distribution."""if isinstance(m, nn.Conv2d):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Conv2d) and m.bias is not None:nn.init.constant_(m.bias, 0)def forward(self, x):"""Executes a forward pass through ABlock, applying area-attention and feed-forward layers to the input tensor."""x = x + self.attn(x)x = x + self.mlp(x)return xclass A2C2f(nn.Module):  """A2C2f module with residual enhanced feature extraction using ABlock blocks with area-attention. Also known as R-ELANThis class extends the C2f module by incorporating ABlock blocks for fast attention mechanisms and feature extraction.Attributes:c1 (int): Number of input channels;c2 (int): Number of output channels;n (int, optional): Number of 2xABlock modules to stack. Defaults to 1;a2 (bool, optional): Whether use area-attention. Defaults to True;area (int, optional): Number of areas the feature map is divided. Defaults to 1;residual (bool, optional): Whether use the residual (with layer scale). Defaults to False;mlp_ratio (float, optional): MLP expansion ratio (or MLP hidden dimension ratio). Defaults to 1.2;e (float, optional): Expansion ratio for R-ELAN modules. Defaults to 0.5.g (int, optional): Number of groups for grouped convolution. Defaults to 1;shortcut (bool, optional): Whether to use shortcut connection. Defaults to True;Methods:forward: Performs a forward pass through the A2C2f module.Examples:>>> import torch>>> from ultralytics.nn.modules import A2C2f>>> model = A2C2f(c1=64, c2=64, n=2, a2=True, area=4, residual=True, e=0.5)>>> x = torch.randn(2, 64, 128, 128)>>> output = model(x)>>> print(output.shape)"""def __init__(self, c1, c2, n=1, a2=True, area=1, residual=False, mlp_ratio=2.0, e=0.5, g=1, shortcut=True):super().__init__()c_ = int(c2 * e)  # hidden channelsassert c_ % 32 == 0, "Dimension of ABlock be a multiple of 32."# num_heads = c_ // 64 if c_ // 64 >= 2 else c_ // 32num_heads = c_ // 32self.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv((1 + n) * c_, c2, 1)  # optional act=FReLU(c2)init_values = 0.01  # or smallerself.gamma = nn.Parameter(init_values * torch.ones((c2)), requires_grad=True) if a2 and residual else Noneself.m = nn.ModuleList(nn.Sequential(*(ABlock(c_, num_heads, mlp_ratio, area) for _ in range(2))) if a2 else C3k(c_, c_, 2, shortcut, g) for _ in range(n))def forward(self, x):"""Forward pass through R-ELAN layer."""y = [self.cv1(x)]y.extend(m(y[-1]) for m in self.m)if self.gamma is not None:return x + (self.gamma * self.cv2(torch.cat(y, 1)).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)return self.cv2(torch.cat(y, 1))

        模型结构图如下:


后续明天再写 — 。— !

http://www.dtcms.com/wzjs/49577.html

相关文章:

  • 海口网站制作站长工具查询系统
  • 网站做产品的审核工作内容360站长平台
  • 全国房产查询系统西安seo阳建
  • 上海工商网上办事平台网站怎么优化关键词
  • 中国在菲律宾做网站百度pc端首页
  • 自己 做 网站天津seo排名公司
  • 亳州做商标网站的公司快速开发网站的应用程序
  • 营销推广型网站公司uc浏览网页版进入
  • 高端网站的建设站长之家seo查询
  • 做网站用服务器网络推广员每天的工作是什么
  • wordpress怎么让文章只显示摘要seo优化排名经验
  • 东莞国药官网网上商城郑州官网网站推广优化
  • 公司微网站建设方案seo怎么弄
  • 免费在线做网站seo流量增加软件
  • 茂县建设局网站网络营销推广有效方式
  • 怎样提高网站的打开速度网店如何引流与推广
  • 企业信用修复单页网站怎么优化
  • 南昌网站空间教育机构排名
  • 网站开发与app差距关键词查询工具
  • 中邮保险网站关键词有几种类型
  • 网站是专门对生活中的一些所谓常识做辟谣的深圳网络品牌推广公司
  • 安徽省建设工程信网站百度人工服务热线电话
  • 如何做视频播放网站北京网络推广公司排行
  • 自己家里做网站网速慢网址怎么推广
  • 企业网站类型主要包括互动营销公司
  • 邯郸做网站服务商如何增加网站的外链
  • 徐州市做网站图片优化软件
  • 湖北孝感展示型网站建设价格aso优化服务
  • 连云港网站建设培训学校郑州网络推广效果
  • 企业网站哪家做得好淘宝怎样优化关键词