当前位置: 首页 > wzjs >正文

购物网站建设要多少钱百度搜索指数查询

购物网站建设要多少钱,百度搜索指数查询,赣州景文网络科技有限公司,武汉专业做网站文章目录 前言题目:乘积小于 K 的子数组参考思路方法一:滑动窗口方法二:二分查找 参考题解方法一:滑动窗口解法方法二:二分查找解法 深入思考浮点精度?right - left 1?二分法?哈希优…

文章目录

  • 前言
  • 题目:乘积小于 K 的子数组
  • 参考思路
    • 方法一:滑动窗口
    • 方法二:二分查找
  • 参考题解
    • 方法一:滑动窗口解法
    • 方法二:二分查找解法
  • 深入思考
    • 浮点精度?
    • right - left + 1?
    • 二分法?
    • 哈希优化?


前言

在这里插入图片描述

本题与 力扣713题 相同


题目:乘积小于 K 的子数组

给你一个整数数组 nums 和一个整数 k ,请你返回子数组内所有元素的乘积严格小于 k 的连续子数组的数目。

示例 1:
输入:nums = [10,5,2,6], k = 100
输出:8

解释:8 个乘积小于 100 的子数组分别为:[10]、[5]、[2]、[6]、[10,5]、[5,2]、[2,6]、[5,2,6]。
需要注意的是 [10,5,2] 并不是乘积小于 100 的子数组。

示例 2:
输入:nums = [1,2,3], k = 0
输出:0

提示:
1 <= nums.length <= 3 * 104
1 <= nums[i] <= 1000
0 <= k <= 106

参考思路

方法一:滑动窗口

注意!!这里的数字都是正数
联想之前的滑动窗口,如果满足非负数组的单调性

  • 也就是在非负数组中,子数组和随着窗口的扩展(右边界右移)是单调不减的

参考深入思考中的滑动窗口解析:【算法】力扣560题:和为 K 的连续子数组之深入思考

那么使用滑动窗口是非常好的办法!

  • 使用滑动窗口来维护一个满足条件的子数组范围 [left, right]。
  • 对于每个右边界 right,找到最小的左边界 left,使得窗口内的乘积小于 k。
  • 统计以 nums[right] 结尾的满足条件的子数组个数:right - left + 1。

但是要注意处理极端情况:if (k <= 1) return 0;

复杂度分析

  • 时间复杂度:O(n)
    每个元素最多被访问两次(一次加入窗口,一次移出窗口)。

  • 空间复杂度:O(1)
    只使用了常数级别的额外空间。

方法二:二分查找

如果有做过 和为k的子数组 这个题,可能会延伸思考,那么这题如果求乘积。那么我能不能也有前缀乘积的方法来解题呢?

可以!但是仔细一想前缀乘积会使得数字变得很大,从而溢出

所以我们对于数组中的每个元素 nums[i],取自然对数 ln(nums[i])。
乘积小于 k 的条件可以转换为:

nums[left] * nums[left+1] * ... * nums[right] < k

两边取对数之后

ln(nums[left]) + ln(nums[left+1]) + ... + ln(nums[right]) < ln(k)

此时一看,这不是我们熟悉的前缀和吗?
因此计算对数数组的前缀和

prefixSum[i] = ln(nums[0]) + ln(nums[1]) + ... + ln(nums[i-1])

对其变形
对于每个右边界 right,我们需要找到最小的左边界 left,使得:

prefixSum[right+1] - prefixSum[left] < ln(k)

之后,问题就转换成了找到一某一个 prefixSum 使其值 < ln(k)
所以核心就是:两边取对数将乘积问题转换为求和问题,然后利用前缀和 + 二分查找来解决

那么注意到数组的数字都是大于1的数字
所以计算前缀和数组是单调递增的,因此可以使用二分查找来高效地找到满足条件的 left。
这里可以选择直接调用库函数来实现二分查找,只需要快速找到第一个大于等于 ln(k)的位置即可

此时,可能有疑问
1.之前那题“子数组和为k”不是说不能用二分法吗?为什么这里又可以用?
2.那这里这题可以用哈希表优化来做吗?
参考答案可以看本文的第三部分:深入思考

复杂度分析

  • 时间复杂度:O(n log n)
    计算前缀乘积的时间复杂度是 O(n)。
    对于每个 j,二分查找的时间复杂度是 O(log n),总共有 n 个 j,因此二分查找的总时间复杂度是 O(n log n)。

  • 空间复杂度:O(n)
    需要存储前缀乘积数组。

二分法可以用来解决乘积小于 K 的子数组问题,但它的时间复杂度是 O(n log n),不如滑动窗口方法高效

参考题解

方法一:滑动窗口解法

class Solution {
public:int numSubarrayProductLessThanK(vector<int>& nums, int k) {if (k <= 1) return 0;int result = 0;int left = 0;int product = 1;for (int right = 0; right < nums.size(); ++right) {product *= nums[right];while (product >= k && left <= right) {product /= nums[left];++left;}result += right - left + 1;}return result;}
};

方法二:二分查找解法


class Solution {
public:int numSubarrayProductLessThanK(vector<int>& nums, int k) {if (k <= 1) return 0;int n = nums.size();vector<double> logPrefix(n + 1, 0.0);double logK = log(k); // ln(k)for (int i = 0; i < n; ++i) {logPrefix[i + 1] = logPrefix[i] + log(nums[i]);}int count = 0;// 对于每个右边界 right,使用二分查找找到最小的 leftfor (int right = 0; right < n; ++right) {// 找到第一个大于等于 target 的位置int left = upper_bound(logPrefix.begin(), logPrefix.begin() + right + 1, logPrefix[right + 1] - logK + 1e-10) - logPrefix.begin();count += right + 1 - left;}return count;}
};

深入思考

浮点精度?

在二分查找中,我们比较的是浮点数(prefixSum[mid] 和 target)。
由于浮点数的精度有限,直接比较可能会导致结果不准确。
例如,prefixSum[mid] 可能非常接近 target,但由于精度问题,prefixSum[mid] >= target 的判断可能会出错。

修正方法:
在比较时,添加一个很小的值(例如 1e-10)来避免浮点数精度问题。

这样可以确保 prefixSum[mid] 和 target 的比较更加准确。

right - left + 1?

为什么最后求解的答案是 right - left + 1?

为什么子数组个数是 right - left + 1?

由于子数组必须是连续的,因此以 nums[right] 结尾的子数组可以表示为:

[left, right], [left+1, right], [left+2, right], ..., [right, right]

简而言之,就是当在遍历左右边界的时候,子数组的个数是right - left + 1。表示以 nums[right] 结尾的满足条件的子数组个数。

right - left 表示从 left 到 right 之间的元素个数(不包括 left)。

  • +1 表示包括 left 本身。
  • 因此,right - left + 1 表示从 left 到 right 的所有子数组的个数

二分法?

首先思考这题为什么可以用二分法去查找

因为数组数字都是大于或等于 1 ,因此取对数后的前缀和数组是单调递增的,也就是越乘肯定是越大的
所以说可以使用二分法去快速查找

哈希优化?

这题可以效仿【算法】力扣560题:和为 K 的连续子数组之深入思考 使用哈希优化吗?

需要注意的是,哈希表方法通常用于解决“等于某个值”的问题
哈希表通常用于解决以下类型的问题:

  • 查找“等于某个值”的情况:例如,求和等于 k 的子数组。
  • 快速查找和更新:哈希表可以在 O(1) 时间内完成查找和更新操作。

在求和等于 K 的子数组问题中,哈希表的作用是记录前缀和的出现次数,从而快速判断是否存在子数组的和等于 k。具体来说:

  • 对于当前前缀和 sum,我们查找 sum - k 是否在哈希表中。
  • 如果存在,则说明存在若干个子数组的和等于 k。

而对于这道题:
在乘积小于 K 的子数组问题中,我们需要找到满足以下条件的子数组:

nums[left] * nums[left+1] * ... * nums[right] < k

取对数后:

ln(nums[left]) + ln(nums[left+1]) + ... + ln(nums[right]) < ln(k)

哈希表的核心功能是快速查找“等于某个值”的情况,而“小于”条件需要遍历哈希表中的所有键值对,时间复杂度会从 O(1) 退化为 O(n)。
例如,对于每个右边界 right,我们需要找到所有满足 prefixSum[left] > prefixSum[right+1] - ln(k) 的 left,这需要遍历哈希表中的所有前缀和。

http://www.dtcms.com/wzjs/48911.html

相关文章:

  • 嘉兴做网站的公司有哪些营销型企业网站建设步骤
  • seo蒙牛伊利企业网站专业性诊断网站seo优化方案设计
  • 做视频网站需要多大的带宽泉州网站建设优化
  • 公司备案证查询网站查询cps广告联盟平台
  • H5平台网站建设东莞seo建站推广费用
  • 网站建设美文正规职业技能培训机构
  • 销售产品网站有哪些企业网站建设案例
  • 建立网站服务的公司网站怎么做线上销售
  • 中国工商银行app下载电脑系统优化软件排行榜
  • 网站备案 新网seo网络排名优化
  • 公司简介100字范文长沙seo优化推广公司
  • 服务质量好的crm系统seo关键词排名优化推荐
  • 装饰网站建设公司江苏短视频seo搜索
  • web网站建设应遵循的原则seo外包资讯
  • 厦门建网站多少钱深圳网络推广团队
  • 俄语培训网站建设手机cpu性能增强软件
  • wordpress科技网站模板宁波seo行者seo09
  • 一级a做网站免费腾讯广告官网
  • 宜宾建功路桥建设有限公司网站子域名在线查询
  • 湘潭网站建设磐石网络百度小说风云榜首页
  • 免备案的网站产品运营推广方案
  • ftp上传网站之后怎么做代发关键词包收录
  • 网站改版的影响优化深圳seo
  • 单页网站上传教程视频最近三天的新闻大事小学生
  • 建设一个公司网站 需要钱吗廊坊seo快速排名
  • 诸暨市建设局行业管理网站ip营销的概念
  • 找事情做的网站google推广 的效果
  • 网站建设存在问题成都网站建设团队
  • 企业怎样做网站app拉新渠道
  • wordpress代码主题深圳seo优化培训