当前位置: 首页 > wzjs >正文

腾讯云网站建设视频百度关键词排名突然消失了

腾讯云网站建设视频,百度关键词排名突然消失了,永州市规划建设局网站,长沙网站托管文章目录 题目1584.连接所有点的最小费用 最小生成树MST,有两种算法进行求解,分别是Kruskal算法和Prim算法Kruskal算法从边出发,适合用于稀疏图Prim算法从顶点出发,适合用于稠密图:基本思想是从一个起始顶点开始&#…

文章目录

  • 题目
    • 1584.连接所有点的最小费用

  • 最小生成树MST,有两种算法进行求解,分别是Kruskal算法Prim算法
  • Kruskal算法从边出发,适合用于稀疏图
  • Prim算法从顶点出发,适合用于稠密图:基本思想是从一个起始顶点开始,逐步扩展生成树,每次选择一条连接已选顶点和未选顶点的最小权重边,直到所有顶点都被包含在生成树中。

Prim算法的基本步骤:

  • 初始化:选择一个起始顶点,将其加入生成树中。
  • 选择最小边:在所有连接生成树中顶点和未加入生成树的顶点的边中,选择权重最小的边。
  • 扩展生成树:将这条边及其连接的未加入顶点加入生成树。
  • 重复:重复步骤2和步骤3,直到所有顶点都加入生成树。

与求解最短路径的Dijkstra算法的求解思路是有异曲同工之妙的

  • Prim 算法的朴素模版,时间复杂度 O ( n 2 ) O(n^2) O(n2)
# 该模版可以求解最小生成树的权值ans = 0# done[i]表示节点i到最小生成树的最小距离是否确定done = [False]*n # 注意,现在并没有设置done[0]=Truedis = [float('inf')]*ndis[0] = 0# 构建最小生成树for i in range(n):m = float('inf')# 还没在树中,并且到达树的距离最小的节点for j in range(n):if not done[j] and (node < 0 or dis[j] < dis[node]):node = jdone[node] = True# 累加情况ans += dis[node]# 更新node的邻居的情况for neigh in range(n):if not done[neigh] and edge[node][neigh] < dis[neigh]:dis[neigh] = edge[node][neigh]return ans
  • Kruakal算法是从边出发,一直合并不与当前节点形成环的边,时间复杂度 O ( e l o g e ) O(eloge) O(eloge),e是边数
  • Kruskal算法模版
        # 先按照距离排序edge.sort(key=lambda x:x[0])# 使用并查集parent = list(range(n))def find(index):if parent[index] != index:parent[index] = find(parent[index])return parent[index]def union(index1,index2):parent[find(index1)] = find(index2)ans = 0count = 0 # 计数器# 对边进行遍历for d,x,y in edge:fx,fy = find(x),find(y)# 当属于同一个祖先就不要,不然会形成环if fx == fy:continueans += d# 更新计数器count+=1union(x,y)# 如何合并了n-1的边,就结束if count == n-1:breakreturn ans

题目

1584.连接所有点的最小费用

1584.连接所有点的最小费用

在这里插入图片描述

思路分析:最小生成树的模版题目

  • 使用Prim算法模版题
class Solution:def minCostConnectPoints(self, points: List[List[int]]) -> int:# 有两种实现方式,分别是Kruskal算法和Prim 算法# Kruskal算法从边出发,适合用于稀疏图,prim算法从点出发,适合用于稠密图n = len(points)# 先构建邻接表edge = [[float('inf')]*n for _ in range(n)]for i in range(n):x1,y1 = points[i]for j in range(i+1,n):x2,y2 = points[j]d = abs(x1-x2)+abs(y1-y2)edge[i][j] = d edge[j][i] = d # 该模版可以求解最小生成树的权值ans = 0# done[i]表示节点i到最小生成树的最小距离是否确定done = [False]*n # 注意,现在并没有设置done[0]=Truedis = [float('inf')]*ndis[0] = 0# 构建最小生成树for i in range(n):m = float('inf')# 还没在树中,并且到达树的距离最小的节点for j in range(n):if not done[j] and (node < 0 or dis[j] < dis[node]):node = jdone[node] = True# 累加情况ans += dis[node]# 更新node的邻居的情况for neigh in range(n):if not done[neigh] and edge[node][neigh] < dis[neigh]:dis[neigh] = edge[node][neigh]return ans
  • 使用Kruskal算法模版
class Solution:def minCostConnectPoints(self, points: List[List[int]]) -> int:# 有两种实现方式,分别是Kruskal算法和Prim 算法# Kruskal算法从边出发,适合用于稀疏图,prim算法从点出发,适合用于稠密图# 使用Kruskal,从边出发n = len(points)edge = []# 将全部的边都加入这个edgefor i in range(n):x1,y1 = points[i]for j in range(i+1,n):x2,y2 = points[j]d = abs(x1-x2)+abs(y1-y2)edge.append((d,i,j))# 先按照距离排序edge.sort(key=lambda x:x[0])# 使用并查集parent = list(range(n))def find(index):if parent[index] != index:parent[index] = find(parent[index])return parent[index]def union(index1,index2):parent[find(index1)] = find(index2)ans = 0count = 0 # 计数器for d,x,y in edge:fx,fy = find(x),find(y)if fx == fy:continueans += dcount+=1union(x,y)if count == n-1:breakreturn ans
http://www.dtcms.com/wzjs/488739.html

相关文章:

  • 中国常州网官网合肥品牌seo
  • 深圳网站制作公司咨询软文营销的定义
  • 企业级网站开发广州专门做seo的公司
  • 衡阳网站建设公司哪家好seo推广
  • ui设计方向网站建设目标百度seo排名360
  • 网站视频下载软件服装品牌策划及营销推广方案
  • 如何重启网站服务器百度竞价开户哪家好
  • 搭建电商平台网站网络营销项目策划书
  • 哪些网站可以找兼职做室内设计百度搜索广告价格
  • 怎么做跳转网站图片外链上传网站
  • 免费制作logo的软件百度seo正规优化
  • 装修案例图片 效果图网站关键词优化方法
  • 经营性网站备案申请旅游推广赚佣金哪个平台好
  • 新网站的宣传推广企业seo排名优化
  • 如何作做网站怎么在百度上发帖推广
  • 校园网站方案seo网站推广优化就找微源优化
  • 建设网站翻译英文翻译太原百度快速排名提升
  • wordpress 放弃seo页面代码优化
  • 广州建设网站技术seo快速排名软件网址
  • 自己建设手机网站企业短视频推广
  • 哪里网站建设联系南宁关键词优化公司
  • 可以写程序的软件优化关键词的正确方法
  • 担保交易网站开发重庆森林经典台词梁朝伟
  • 网页设计背景图哪些行业适合做seo
  • 啥都有是什么购物平台网站推广seo招聘
  • 泰州网站制作方案定制网络营销推广方案前言
  • 平面设计在哪里学最好郑州网站优化公司
  • 做网站建设还有钱赚吗百度广告竞价排名
  • 网站备案期间停止解析百度导航是哪个国家的
  • 做调查赚钱的网站又哪些品牌策划