当前位置: 首页 > wzjs >正文

全国网站集约化建设试点建立一个网站需要多少钱?

全国网站集约化建设试点,建立一个网站需要多少钱?,游戏开发平台,珠海网站制作网络公司目录 前言 一、 前期准备 1. 设置GPU 2. 导入数据 3. 划分数据集 二、调用官方的VGG-16模型 三、 训练模型 1. 编写训练函数 2. 编写测试函数 3. 设置动态学习率 4. 正式训练 四、 结果可视化 1. Loss与Accuracy图 2. 指定图片进行预测 3. 模型评估 五、总结 前言 &#x1f368…

目录

前言

一、 前期准备

1. 设置GPU

2. 导入数据

3. 划分数据集

二、调用官方的VGG-16模型

三、 训练模型

1. 编写训练函数

2. 编写测试函数

3. 设置动态学习率

4. 正式训练

四、 结果可视化

1. Loss与Accuracy图

2. 指定图片进行预测

3. 模型评估

五、总结

前言

  •  🍨 本文为🔗365天深度学习训练营中的学习记录博客
  • 🍖 原作者:K同学啊

一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warningswarnings.filterwarnings("ignore")             #忽略警告信息device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

2. 导入数据

import os,PIL,random,pathlibdata_dir = './6-data/'
data_dir = pathlib.Path(data_dir)data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNames
# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸# transforms.RandomHorizontalFlip(), # 随机水平翻转transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder("./6-data/",transform=train_transforms)
total_data
total_data.class_to_idx

3. 划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
batch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)

for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break


二、调用官方的VGG-16模型


VGG-16(Visual Geometry Group-16)是由牛津大学视觉几何组(Visual Geometry Group)提出的一种深度卷积神经网络架构,用于图像分类和对象识别任务。VGG-16在2014年被提出,是VGG系列中的一种。VGG-16之所以备受关注,是因为它在ImageNet图像识别竞赛中取得了很好的成绩,展示了其在大规模图像识别任务中的有效性。

以下是VGG-16的主要特点:

1深度:VGG-16由16个卷积层和3个全连接层组成,因此具有相对较深的网络结构。这种深度有助于网络学习到更加抽象和复杂的特征。
2卷积层的设计:VGG-16的卷积层全部采用3x3的卷积核和步长为1的卷积操作,同时在卷积层之后都接有ReLU激活函数。这种设计的好处在于,通过堆叠多个较小的卷积核,可以提高网络的非线性建模能力,同时减少了参数数量,从而降低了过拟合的风险。
3池化层:在卷积层之后,VGG-16使用最大池化层来减少特征图的空间尺寸,帮助提取更加显著的特征并减少计算量。
4全连接层:VGG-16在卷积层之后接有3个全连接层,最后一个全连接层输出与类别数相对应的向量,用于进行分类。

VGG-16结构说明:

●13个卷积层(Convolutional Layer),分别用blockX_convX表示;
●3个全连接层(Fully connected Layer),用classifier表示;
●5个池化层(Pool layer)。

VGG-16包含了16个隐藏层(13个卷积层和3个全连接层),故称为VGG-16

image.png

from torchvision.models import vgg16device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))# 加载预训练模型,并且对模型进行微调
model = vgg16(pretrained = True).to(device) # 加载预训练的vgg16模型for param in model.parameters():param.requires_grad = False # 冻结模型的参数,这样子在训练的时候只训练最后一层的参数# 修改classifier模块的第6层(即:(6): Linear(in_features=4096, out_features=2, bias=True))
# 注意查看我们下方打印出来的模型
model.classifier._modules['6'] = nn.Linear(4096,len(classeNames)) # 修改vgg16模型中最后一层全连接层,输出目标类别个数
model.to(device)  
model

 


三、 训练模型

1. 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

2. 编写测试函数


测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

3. 设置动态学习率
 

# def adjust_learning_rate(optimizer, epoch, start_lr):
#     # 每 2 个epoch衰减到原来的 0.98
#     lr = start_lr * (0.92 ** (epoch // 2))
#     for param_group in optimizer.param_groups:
#         param_group['lr'] = lrlearn_rate = 1e-4 # 初始学习率
# optimizer  = torch.optim.SGD(model.parameters(), lr=learn_rate)

✨调用官方动态学习率接口
与上面方法是等价的

# 调用官方动态学习率接口时使用
lambda1 = lambda epoch: 0.92 ** (epoch // 4)
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

👉调用官方接口示例:
该代码块仅为代码讲解示例,不是整体程序的一部分

model = [torch.nn.Parameter(torch.randn(2, 2, requires_grad=True))]
optimizer = SGD(model, 0.1)
scheduler = ExponentialLR(optimizer, gamma=0.9)for epoch in range(20):for input, target in dataset:optimizer.zero_grad()output = model(input)loss = loss_fn(output, target)loss.backward()optimizer.step()scheduler.step()

4. 正式训练


model.train()、model.eval()训练营往期文章中有详细的介绍。请注意观察我是如何保存最佳模型,与TensorFlow2的保存方式有何异同。

import copy
from datetime import datetime
import os# 导入必要的PyTorch组件
import torch
import torch.nn as nn
from torch.optim import lr_scheduler# 创建交叉熵损失函数
loss_fn = nn.CrossEntropyLoss()
# 设置训练的轮数(epoch)
epochs = 40# 初始化训练和测试的损失和准确率列表
train_loss = []
train_acc = []
test_loss = []
test_acc = []# 初始化最佳准确率和最佳模型参数
best_acc = 0
best_model_params = None# 定义模型保存的根目录
model_root_dir = './model'# 假设你的模型是一个包含卷积层的模型,下面是一个示例
class SimpleModel(nn.Module):def __init__(self):super(SimpleModel, self).__init__()# 假设输入是一个 (224, 224) 大小的图像,通道数为 3self.layer1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1)self.layer2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)self.layer3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)# 计算展平后线性层的输入特征数self.fc1 = nn.Linear(128 * 224 * 224, 512)  # 根据输入尺寸计算展平后的特征数self.fc2 = nn.Linear(512, 10)  # 假设分类任务是10类def forward(self, x):x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = x.view(x.size(0), -1)  # 展平操作x = self.fc1(x)x = self.fc2(x)return x# 初始化模型
model = SimpleModel()# 设置初始学习率和优化器
learn_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learn_rate)# 设置学习率调度器
lambda1 = lambda epoch: 0.92 ** (epoch // 4)
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)# 假设 train_dl 和 test_dl 已定义为你的训练和测试数据加载器
# 例如:train_dl = DataLoader(train_dataset, batch_size=64, shuffle=True)# 开始训练循环
for epoch in range(epochs):# 将模型设置为训练模式model.train()# 这里假设有一个函数来执行训练,并返回训练的准确率和损失epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)# 更新学习率(如果是使用PyTorch的学习率调度器)scheduler.step()# 将模型设置为评估模式model.eval()# 这里假设有一个函数来执行测试,并返回测试的准确率和损失epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 如果当前epoch的测试准确率超过了之前的最佳准确率,则保存当前模型参数if epoch_test_acc > best_acc:best_acc = epoch_test_accbest_model_params = copy.deepcopy(model.state_dict())# 将当前epoch的准确率和损失添加到列表中train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']# 打印当前epoch的信息template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))# 创建一个带有时间戳的文件夹用来保存每次训练的最好模型
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
model_dir = os.path.join(model_root_dir, timestamp)
os.makedirs(model_dir, exist_ok=True)# 保存最佳模型参数
torch.save(best_model_params, os.path.join(model_dir, 'best_model_params.pth'))
print('best_model_params.pth 已保存在:' + model_dir)print('Done')

四、 结果可视化

1. Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率from datetime import datetime
current_time = datetime.now() # 获取当前时间epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

2. 指定图片进行预测

from PIL import Image classes = list(total_data.class_to_idx)def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')plt.imshow(test_img)  # 展示预测的图片test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='./6-data/Angelina Jolie/001_fe3347c0.jpg', model=model, transform=train_transforms, classes=classes)

 

3. 模型评估

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)

五、总结

在进行模型训练时,我遇到了一些常见的错误和挑战,下面总结了几个注意事项和tips,供后续使用:

1. 模型参数和数据维度匹配

报错:“mat1 and mat2 shapes cannot be multiplied”,通常是因为模型的输入数据维度和模型定义的层不匹配。特别是在卷积层后接全连接层时,确保通过展平(flatten)操作正确调整输入的形状。例如,卷积输出的大小和全连接层的输入维度必须匹配。

2. 'list' object has no attribute 'parameters' 错误

• 这通常是因为将模型定义为一个列表(model = [torch.nn.Parameter(...)]),而不是一个 nn.Module 的子类对象。确保模型是一个继承自 nn.Module 的类的实例,并使用 model = MyModel() 的形式来初始化。

3. 学习率调整

• 在使用学习率调度器时,确保传递给调度器的优化器是正确的。例如,scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1),这里 optimizer 必须是正确初始化的。我的错误是忘记了在定义优化器时直接把学习率衰减的逻辑写到 optimizer 中。

4. 保存模型的参数

• 在训练过程中,常常需要保存模型的最佳参数。如果在 train() 函数中发现了最佳性能,使用 copy.deepcopy(model.state_dict()) 可以确保保存的是参数而不是模型本身,避免了模型结构被修改或丢失。

5. 学习率调度器

• 使用学习率调度器(如 LambdaLR)时,确保每次更新都能正确调用 scheduler.step(),并且学习率的更新函数要根据训练周期进行调整。

http://www.dtcms.com/wzjs/470778.html

相关文章:

  • 网页qq无法使用快捷登录北京seo百科
  • 我的世界手机做图的网站手机优化专家
  • 西部数码网站管理助手3.1免费创建个人网站
  • 百度推广投诉电话客服24小时武汉seo优
  • 广州优化网站推广seo网站优化培训厂家报价
  • 衡阳网站建设专家东莞头条最新新闻
  • 佛山网站建设与设计公司网络营销产品的首选产品
  • 东莞+网站建设+定制水北京seo顾问
  • wordpress 切换域名关键词优化怎么操作
  • 科技有限公司可以做网站建设吗百度推广优化师培训
  • 专业企业建站系统云南疫情最新数据消息中高风险地区
  • 特色的网站建设蚂蚁链接bt链接
  • 网络营销销售常州seo外包公司
  • 哪些网站做的好处竞价推广开户公司
  • 中山网站代运营seo渠道
  • 网上哪些网站可以做兼职百度seo排名培训优化
  • 旅游信息管理网站开发文件如何自制网站
  • 自己做的网站显示不出来抖音关键词用户搜索排名靠前
  • 做土特产网站什么名字最好搜百度盘
  • 网站建设表格的属性谷歌chrome安卓版
  • 外贸网站如何做免费推广seo计费系统登录
  • 提高网站粘性浏览器观看b站视频的最佳设置
  • 哪家公司做网站结算好百度贴吧网页入口
  • 做网址导航网站拼多多关键词排名查询软件
  • 购物网站logo沈阳网站优化
  • 建设一个视频教学网站seo综合查询国产
  • 个体工商户可以做网站吗医院线上预约
  • 做标志的好网站寻找外贸客户的网站
  • 网页设计代码quotseo标题优化关键词
  • ui设计网站模板最新域名查询ip