当前位置: 首页 > wzjs >正文

网站建站的步骤流程广州网站建设推荐

网站建站的步骤流程,广州网站建设推荐,仪征网站建设,关键词做网站标题是什么意思1. pytorch手写数字预测 1.背景2.准备数据集2.定义模型3.dataloader和训练4.训练模型5.测试模型6.保存模型 1.背景 因为自身的研究方向是多模态目标跟踪,突然对其他的视觉方向产生了兴趣,所以心血来潮的回到最经典的视觉任务手写数字预测上来&#xff0…

1. pytorch手写数字预测

  • 1.背景
  • 2.准备数据集
  • 2.定义模型
  • 3.dataloader和训练
  • 4.训练模型
  • 5.测试模型
  • 6.保存模型

1.背景

因为自身的研究方向是多模态目标跟踪,突然对其他的视觉方向产生了兴趣,所以心血来潮的回到最经典的视觉任务手写数字预测上来,所以这份教程并不是一份非常详尽的教程,是在一部分pytorch,深度学习基础上的教程,如果需要的是非常保姆级的教程建议看别的文章

2.准备数据集

这里我才用了直接导torchvision中的dataset包来下载Mnist数据集,也算是一个非常经典的数据集了

# 导入数据集
from torchvision.datasets import MNIST
import torch# 设置随机种子
torch.manual_seed(3306)# 数据预处理
from torchvision import transforms
# 定义数据转换
transform = transforms.Compose([transforms.ToTensor(),  # 转换为 Tensortransforms.Normalize((0.1307,), (0.3081,))  # 标准化
])# 下载 MNIST 数据集
mnist_train = MNIST(root='./dataset_file/mnist_raw', train=True, download=True,transform=transform)
mnist_test = MNIST(root='./dataset_file/mnist_raw', train=False, download=True,transform=transform)
# 查看数据集大小
print(f"MNIST train dataset size: {len(mnist_train)}")
print(f"MNIST test dataset size: {len(mnist_test)}")

其中,MNIST()中的root代表的是数据集存放的位置,download代表是如果当前位置没有数据集是否需要下载。
transformer则是对数据的处理方式,我这里采用了简单地转成tensor和简单地标准化。

不过这样子下载下来的数据集是二进制格式的,无法直接查看图片,当然,如果你需要查看图片,也有办法。

# 查看图片
import matplotlib.pyplot as pltdef show_image(id):img, label = mnist_train[id]img = img.squeeze().numpy()  # 去掉通道维度print(img.shape)# print(img)plt.imshow(img, cmap='gray')plt.title(f"Label: {label}")plt.axis('off')plt.show()show_image(1)

效果
在这里插入图片描述

又或者你想要下载的数据集是图片格式,我这里也准备了代码

代码是在别人的基础上改的,其中数据集存放路径是dataset_dir,如果需要修改自行打印然后修改位置就好了。

#!/usr/bin/env python3
# -*- encoding utf-8 -*-'''
@File: save_mnist_to_jpg.py
@Date: 2024-08-23
@Author: KRISNAT
@Version: 0.0.0
@Email: ****
@Copyright: (C)Copyright 2024, KRISNAT
@Desc:1. 通过 torchvision.datasets.MNIST 下载、解压和读取 MNIST 数据集;2. 使用 PIL.Image.save 将 MNIST 数据集中的灰度图片以 JPEG 格式保存。
'''import sys, os
sys.path.insert(0, os.getcwd())from torchvision.datasets import MNIST
import PIL
from tqdm import tqdmif __name__ == "__main__":home_dir = os.path.abspath('.')root = os.path.abspath(os.path.join(home_dir, '../dataset_file'))print(root)# exit(0)# 图片保存路径dataset_dir = os.path.join(root, 'mnist_jpg')if not os.path.exists(dataset_dir):os.makedirs(dataset_dir)# 从网络上下载或从本地加载MNIST数据集# 训练集60K、测试集10K# torchvision.datasets.MNIST接口下载的数据一组元组# 每个元组的结构是: (PIL.Image.Image image model=L size=28x28, 标签数字 int)training_dataset = MNIST(root='mnist',train=True,download=True,)test_dataset = MNIST(root='mnist',train=False,download=True,)# 保存训练集图片with tqdm(total=len(training_dataset), ncols=150) as pro_bar:for idx, (X, y) in enumerate(training_dataset):f = dataset_dir + "/" + "training_" + str(idx) + \"_" + str(training_dataset[idx][1] ) + ".jpg"  # 文件路径training_dataset[idx][0].save(f)pro_bar.update(n=1)# 保存测试集图片with tqdm(total=len(test_dataset), ncols=150) as pro_bar:for idx, (X, y) in enumerate(test_dataset):f = dataset_dir + "/" + "test_" + str(idx) + \"_" + str(test_dataset[idx][1] ) + ".jpg"  # 文件路径test_dataset[idx][0].save(f)pro_bar.update(n=1)

2.定义模型

这里我准备了两个模型,一个MLP模型和一个简单地CNN模型,其中MLP模型参数量1M,CNN模型参数量大概8M,当然这俩模型也没有很仔细的规划

import torch
import torch.nn as nnclass DigitLinear(nn.Module):def __init__(self):super(DigitLinear, self).__init__()self.fc1 = nn.Linear(28 * 28, 1000)self.fc2 = nn.Linear(1000, 500)self.dropout = nn.Dropout(0.3)self.fc3 = nn.Linear(500, 10)def forward(self, x):x = x.view(-1, 28 * 28)x = self.fc1(x)x = torch.relu(x)x = self.dropout(x)x = self.fc2(x)x = torch.relu(x)x = self.fc3(x)return xclass DigitCNN(nn.Module):def __init__(self):super(DigitCNN,self).__init__()self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)self.fc1 = nn.Linear(64*28*28, 128)self.dropout = nn.Dropout(0.1)self.fc2 = nn.Linear(128, 10)def forward(self, x):# print("x.shape:", x.shape)B,N,H,W = x.shapex = self.conv1(x)x = torch.relu(x)x = self.conv2(x)x = torch.relu(x)x = x.view(B, -1)  # 展平x = self.fc1(x)x = torch.relu(x)x = self.dropout(x)x = self.fc2(x)return x

3.dataloader和训练

这里的代码就很简单了,就是一些参数的选择,例如epoch,batchsize。其中的训练函数我写的买有很全面,只是勉强满足了训练功能,还有好多可以优化的点,比如打印fps,断点续训练啥的,不过这个任务提不起劲去干这事,大家可以自行优化。

# 数据加载器
from torch.utils.data import DataLoader
from lib.model.DigitModel import DigitLinear,DigitCNN
# 定义数据加载器
batch_size = 256
train_loader = DataLoader(mnist_train, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(mnist_test, batch_size=batch_size, shuffle=False)epoch = 50
# 训练模型
net = DigitLinear() # 参数量1M 97.50%
# net = DigitCNN() # 参数量8M 98.81%
net.cuda()# 定义损失函数和优化器
import torch.optim as optim
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练函数def train_model(model, train_loader, criterion, optimizer, num_epochs=10):model.train()  # 设置模型为训练模式for epoch in range(num_epochs):running_loss = 0.0correct = 0total = 0for i, (inputs, labels) in enumerate(train_loader):inputs= inputs.cuda()y = torch.tensor(torch.zeros((inputs.shape[0],10), dtype=torch.float)).cuda()y[torch.arange(inputs.shape[0]), labels] = 1optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, y)loss.backward()optimizer.step()running_loss += loss.item()_, predicted = outputs.max(1)total += labels.size(0)correct += predicted.eq(labels.cuda()).sum().item()epoch_loss = running_loss / len(train_loader)epoch_acc = 100. * correct / totalprint(f'Epoch [{epoch+1}/{num_epochs}], Loss: {epoch_loss:.4f}, Accuracy: {epoch_acc:.2f}%')# 训练模型
train_model(net, train_loader, criterion, optimizer, num_epochs=epoch)

4.训练模型

有了上面的代码就可以开始训练了,我这里训练的截图是我的MLP模型,效果不是很好,CNN的效果稍微好一点,比MLP高1%,但是图忘记截了。反正够用了,因为本身MNIST的数据就不是很完美,有很多类似于噪声的数据例如:
在这里插入图片描述
这些数字我人眼都分不出是什么玩意。

训练效果如下
在这里插入图片描述

5.测试模型

训练完当然是测试了
最后我的MLP模型跑了97.50%的准确率

代码如下

# 测试模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net.eval()
correct = 0
total = 0
with torch.no_grad():for inputs, labels in test_loader:inputs, labels = inputs.to(device).float(), labels.to(device).float()outputs = net(inputs)_, predicted = outputs.max(1)total += labels.size(0)correct += predicted.eq(labels.cuda()).sum().item()# print(f"Predicted: {predicted}, Ground Truth: {targets}")print(f"Accuracy: {correct / total * 100:.4f} %")

在这里插入图片描述

6.保存模型

保存模型代码就更简单了

# 保存模型
torch.save(net.state_dict(), './digit_model.pth')
http://www.dtcms.com/wzjs/468819.html

相关文章:

  • 建筑公司查询网站如何做好线上推广和引流
  • 上海市网站开发站长
  • 如何做企业网站推广网络营销策划推广方案
  • 潍坊知名网站建设怎么收费大数据营销案例分析
  • 如何让自己做的博客网站上线郑州seo建站
  • 网站建设需要哪些成本哈尔滨关键词排名工具
  • 模板网站会员南阳seo
  • 专业网站设计开发网站优化大师怎么下载
  • 做网站就业要会什么做网站的费用
  • 代理机构做的网站找不到人了怎么办如何做网络推广人员
  • 公司建设网站算入什么会计科目百度知道灰色词代发收录
  • 免费网站建设咨询友情链接地址
  • 万州论坛网站建设百度网页游戏大厅
  • 青岛专业建设网站广西南宁市有公司网站设计
  • office做网站模板网络推销平台有哪些
  • c 做网站时字体颜色的代码百度开户渠道商哪里找
  • dede 管理多个网站关键词优化排名用什么软件比较好
  • 网站开发中都引用什么文献长春seo优化企业网络跃升
  • 开源社区源码seo赚钱培训
  • 四川教育公共信息服务平台深圳百度快速排名优化
  • 上海松江区网站建设整合营销策划名词解释
  • seo百度百科企业seo推广
  • 手机app开发制作推荐搜索引擎网站优化和推广方案
  • 广州网站设计报价快照关键词优化
  • 计算机应用网站开发磁力兔子搜索引擎
  • 上海公司车牌申请条件seo工作流程
  • 柞水县城乡建设局网站网络营销有什么特点
  • 做自己独特的表白网站深圳百度地图
  • 网站开发 怎样做费用结算关键词推广优化app
  • 濮阳做网站 汉狮网络换友情链接的网站