当前位置: 首页 > wzjs >正文

网站建设课程设计格式seo最好的工具

网站建设课程设计格式,seo最好的工具,java主要就是做网站吗,企业类网站模版文章目录 LLM 学习(一 序言)知识点1:“Embedding” 在人工智能领域:知识点2:Embedding 引入位置信息的原因知识点3:在 Transformer 的 Decoder 翻译第 i 个单词时进行 Mask 第 i1 个单词的操作 LLM 学习&am…

文章目录

  • LLM 学习(一 序言)
      • 知识点1:“Embedding” 在人工智能领域:
      • 知识点2:Embedding 引入位置信息的原因
      • 知识点3:在 Transformer 的 Decoder 翻译第 i 个单词时进行 Mask 第 i+1 个单词的操作

LLM 学习(一 序言)

1.序言
LLM学习 Transformer 结构大概,图片的视频链接

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

知识点补充:

知识点1:“Embedding” 在人工智能领域:

是一种 “向量化” 或 “向量表示” 的技术,核心是将各类数据映射为连续向量,以在向量空间中体现数据特征及相互关系

  • 机器学习:原理是把离散数据映射为连续向量,从而捕捉数据间潜在关系;通常使用神经网络中的 embedding 层,经训练得到数据的向量表示。该技术能提升模型性能,增强其泛化能力,还可降低计算成本。
  • 自然语言处理(NLP):基于分布式假设,将文本转换为连续向量来捕捉语义信息。常采用词嵌入技术(如 word2vec)或复杂模型(如 Bidirectional Encoder Representations from Transformers,BERT,基于 Transformer 的双向编码器表示)学习文本表示,能够解决词汇鸿沟问题,为文本分类、情感分析、机器翻译等复杂 NLP 任务提供支持,助力文本语义理解。在该领域中,语义相近的单词在向量空间中的位置也相近。
  • 图像领域:如 image embedding(图像嵌入),是将图像映射为向量,以便计算机更好地处理和理解图像信息,用于图像检索、分类等任务。

知识点2:Embedding 引入位置信息的原因

此外,在一些生成式 AI 工具(如 Stable Diffusion )的应用场景中,Embedding 可理解为提示词打包。通过引入特定的触发词,就能代表原本大量描述性提示词的含义,在文件体积小的情况下,引导生成符合预期的结果,还能用于生成特定动作、特征或画风 。
在 Transformer 等模型中,Embedding 需要引入位置信息主要有以下原因:

  • 捕捉序列顺序:自然语言是一种具有顺序结构的信息,词语在句子中的位置不同,句子表达的含义也会不同,如 “我喜欢你” 和 “你喜欢我”。普通的词 Embedding 只是对词本身语义的表示,不包含位置信息 ,引入位置 Embedding 能让模型感知词语在序列中的位置,从而理解句子的正确语义和逻辑顺序
  • 解决模型局限性:Transformer 模型基于自注意力机制,这种机制本身在处理输入时平等对待每个位置的元素,没有内置的顺序信息。若不添加位置 Embedding,模型无法区分 “苹果被我吃了” 和 “我吃了苹果” 这样词相同但顺序不同的句子,位置 Embedding 能弥补这一缺陷,增强模型对序列结构的理解能力
  • 提升模型性能:对于机器翻译、文本生成等任务,准确把握序列顺序至关重要。位置 Embedding 帮助模型更好地学习长距离依赖关系和上下文信息,在处理长句子时,能让模型知道不同词语之间的相对位置,从而更准确地生成或理解文本,提升模型在各类自然语言处理任务中的表现。

知识点3:在 Transformer 的 Decoder 翻译第 i 个单词时进行 Mask 第 i+1 个单词的操作

  • 符合翻译的自回归特性
    Transformer 的 Decoder 部分是自回归模型,模拟人类翻译过程,即从左到右依次生成译文单词。在翻译第 i 个单词时,模型应该仅依据已经翻译出的 1 到 i-1 个单词以及 Encoder 传递过来的源语言编码信息进行预测,而不应该提前 “看到” 未来要生成的单词(第 i+1 个及之后的单词)。如果不进行 Mask 操作,模型就会利用到未来单词的信息,这与实际的翻译过程和自回归机制不符,也无法真实地学习到单词之间的依赖关系和正确的生成顺序
  • 防止模型信息泄露
    在训练过程中,如果不将第 i+1 个及之后的单词 Mask 掉,模型在预测第 i 个单词时,会无意中获取到后续单词的信息,导致模型不是基于正确的上下文来学习和预测,从而产生信息泄露问题。通过 Mask 操作,能够强制模型只能利用当前已有的信息进行预测,让模型学习到如何根据已有的上文生成下一个合理的单词,提高模型对上下文信息的理解和利用能力,增强模型的泛化能力和鲁棒性,使其在实际翻译任务中表现得更好。
http://www.dtcms.com/wzjs/459219.html

相关文章:

  • 网站备案证明网络销售员每天做什么
  • 网站开发使用哪些开发语言抖音搜索关键词排名
  • 如何用模板搭建网站seod的中文意思
  • 自己做网站不想买空间 自己电脑可以做服务器吗?怎么提升关键词的质量度
  • 简单的招聘网站怎么做seo在哪学
  • 怎么做代理ip网站seo教学
  • 网站建设的ppt千度搜索引擎
  • 网站建设技术交流网页seo
  • 厦门市网站建设公司四川seo优化
  • 南宁网站建设方案详细方案站长工具seo综合查询columbu cat
  • 比较好的做网站app制作公司
  • 上海网址推广seo搜索优化公司
  • 网站建设培训网站扬州网络优化推广
  • 龙岗网廊坊seo排名霸屏
  • 网站建设与网站优化菏泽百度推广公司电话
  • 做网站的论文摘要今日头条新闻最新
  • 建设工程部网站收录查询api
  • 运城做网站的公司西安做网站
  • 字体模板素材免费下载网站徐州网站建设方案优化
  • 无锡制作网站价格表aso优化分析
  • ac68u做网站搜索引擎营销的名词解释
  • 深圳傻瓜式网站建设公司好吗地推拉新接单网
  • javaweb视频网站开发互联网广告价格
  • 电商设计专业广东公司搜索seo哪家强
  • 简述电子商务网站建设的基本流程大型seo公司
  • 流量购买网站广告联盟有哪些平台
  • 做直播网站要多少钱网拍外宣怎么推广
  • 西安做网站哪家好想做网络推广的公司
  • 如何通过网站自己做网站乐陵seo优化
  • html页面能做成网站吗现在网络推广哪家好