当前位置: 首页 > wzjs >正文

怎么在搜索引擎里做网站网页自己怎样开网站

怎么在搜索引擎里做网站网页,自己怎样开网站,做旅游网站挣钱吗,免费公司建站提示:100道LeetCode热题-8-3主要是二叉树相关,包括三题:将有序数组转换为二叉搜索树、验证二叉搜索树、二叉搜索树中第K小的元素。由于初学,所以我的代码部分仅供参考。 目录 前言 题目1:将有序数组转换为二叉搜索树…

提示:100道LeetCode热题-8-3主要是二叉树相关,包括三题:将有序数组转换为二叉搜索树、验证二叉搜索树、二叉搜索树中第K小的元素。由于初学,所以我的代码部分仅供参考。


目录

前言

题目1:将有序数组转换为二叉搜索树

1.题目要求:

2.结果代码:

题目2:验证二叉搜索树

1.题目要求:

2.结果代码:

题目3:二叉搜索树中第K小的元素

1.题目要求:

2.结果代码:

总结


前言

五一快乐~

二叉搜索树奉上~


提示:以下是本篇文章正文内容,下面结果代码仅供参考

题目1:将有序数组转换为二叉搜索树

1.题目要求:

题目如下:

给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 平衡 二叉搜索树。

示例 1:

输入:nums = [-10,-3,0,5,9]
输出:[0,-3,9,-10,null,5]
解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:

示例 2:

输入:nums = [1,3]
输出:[3,1]
解释:[1,null,3] 和 [3,1] 都是高度平衡二叉搜索树。

提示:

  • 1 <= nums.length <= 10^{4}
  • -10^{4} <= nums[i] <= 10^{4}
  • nums 按 严格递增 顺序排列

代码框架已经提供如下:

# Definition for a binary tree node.

# class TreeNode(object):

#     def __init__(self, val=0, left=None, right=None):

#         self.val = val

#         self.left = left

#         self.right = right

class Solution(object):

    def sortedArrayToBST(self, nums):

        """

        :type nums: List[int]

        :rtype: Optional[TreeNode]

        """

       

2.结果代码:

class Solution(object):def sortedArrayToBST(self, nums):if not nums:returnmid_index = len(nums) // 2return TreeNode(nums[mid_index], self.sortedArrayToBST(nums[:mid_index]), self.sortedArrayToBST(nums[mid_index + 1:]))

说明:

1)更快,Python 的列表切片操作在底层是高度优化的,对于小数组,切片操作的常数开销可能比递归调用的开销小。

2)小心Python 的递归深度默认为 1000。如果数组非常大,递归调用可能会导致栈溢出。。

题目2:验证二叉搜索树

1.题目要求:

题目如下:

给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。

有效 二叉搜索树定义如下:

  • 节点的左子树只包含 小于 当前节点的数。
  • 节点的右子树只包含 大于 当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。

示例 1:

输入:root = [2,1,3]
输出:true

示例 2:

输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4 。

提示:

  • 树中节点数目范围在[1, 10^{4}] 内
  • -2^{31} <= Node.val <= 2^{31} - 1

代码框架已经提供如下:

# Definition for a binary tree node.

# class TreeNode(object):

#     def __init__(self, val=0, left=None, right=None):

#         self.val = val

#         self.left = left

#         self.right = right

class Solution(object):

    def isValidBST(self, root):

        """

        :type root: Optional[TreeNode]

        :rtype: bool

        """

2.结果代码:

方法一:递归检查(带范围)

# Definition for a binary tree node.
class TreeNode(object):def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightclass Solution(object):def isValidBST(self, root):""":type root: TreeNode:rtype: bool"""def is_valid_bst_helper(node, lower=float('-inf'), upper=float('inf')):if not node:return Trueif node.val <= lower or node.val >= upper:return Falsereturn (is_valid_bst_helper(node.left, lower, node.val) andis_valid_bst_helper(node.right, node.val, upper))return is_valid_bst_helper(root)
  1. 定义了一个递归辅助函数 is_valid_bst_helper,它接收三个参数。

  2. 如果当前节点为空(nodeNone),返回 True,因为空树是有效的二叉搜索树。

  3. 如果当前节点的值小于等于下界或大于等于上界,返回 False,因为这违反了二叉搜索树的性质。

  4. 递归检查左右子树:

    • 对左子树递归调用时,更新上界为当前节点的值(node.val),因为左子树的所有值必须小于当前节点的值。

    • 对右子树递归调用时,更新下界为当前节点的值,因为右子树的所有值必须大于当前节点的值。

    • 递归检查左右子树是否都满足二叉搜索树的性质。

方法二:中序遍历

# Definition for a binary tree node.
class TreeNode(object):def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightclass Solution(object):def isValidBST(self, root):""":type root: TreeNode:rtype: bool"""stack = []prev_val = float('-inf')curr = rootwhile curr or stack:while curr:stack.append(curr)curr = curr.leftcurr = stack.pop()if curr.val <= prev_val:return Falseprev_val = curr.valcurr = curr.rightreturn True

  1. 使用一个栈来模拟递归的调用过程,初始化一个指针 curr 指向根节点,prev_val 用于记录上一个访问的节点值(初始为负无穷)。

  2. 遍历过程:

    • 沿着左子树一直向下,将节点压入栈中,直到左子树为空。

    • 弹出栈顶节点(即当前子树的根节点),检查其值是否大于 prev_val

    • 如果当前节点的值小于等于 prev_val,返回 False,因为这违反了二叉搜索树的性质。

    • 更新 prev_val 为当前节点的值,然后将指针移动到右子树。

题目3:二叉搜索树中第K小的元素

1.题目要求:

题目如下:

给定一个二叉搜索树的根节点 root ,和一个整数 k ,请你设计一个算法查找其中第 k 小的元素(从 1 开始计数)。

示例 1:

输入:root = [3,1,4,null,2], k = 1
输出:1

示例 2:

输入:root = [5,3,6,2,4,null,null,1], k = 3
输出:3

提示:

  • 树中的节点数为 n 。
  • 1 <= k <= n <= 10^{4}
  • 0 <= Node.val <= 10^{4}

进阶:如果二叉搜索树经常被修改(插入/删除操作)并且你需要频繁地查找第 k 小的值,你将如何优化算法?

代码框架已经提供如下:

# Definition for a binary tree node.

# class TreeNode(object):

#     def __init__(self, val=0, left=None, right=None):

#         self.val = val

#         self.left = left

#         self.right = right

class Solution(object):

    def kthSmallest(self, root, k):

        """

        :type root: Optional[TreeNode]

        :type k: int

        :rtype: int

        """

2.结果代码:

class Solution:def kthSmallest(self, root, k):stack = []curr = rootcount = 0while curr or stack:while curr:stack.append(curr)curr = curr.leftcurr = stack.pop()count += 1if count == k:return curr.valcurr = curr.right

说明:使用栈模拟递归过程,避免递归调用的开销。

逻辑

  1. 使用栈存储节点,模拟递归的中序遍历。

  2. 先将当前节点的所有左子节点压入栈中。

  3. 弹出栈顶节点,计数加 1,检查是否为第 k 个节点。

  4. 如果未达到第 k 个节点,继续遍历右子树。

进阶优化:如果二叉搜索树经常被修改(插入/删除操作),并且需要频繁查找第 k 小的值,可以采用以下优化方法:

  1. 存储子树大小:在每个节点中增加一个字段,记录其左子树的节点数量。这样可以在遍历时快速跳过不必要的子树。

  2. 高效查找:通过子树大小信息,直接定位到第 k 小的节点,而无需完整遍历。

这种方法的时间复杂度为 O(h),其中 h 是树的高度,对于平衡二叉搜索树,复杂度为 O(log n)。


总结

针对二叉树的三种题型进行了学习,了解了部分有关二叉树与python的相关知识,大家加油!

http://www.dtcms.com/wzjs/456709.html

相关文章:

  • 网站图片计时器怎么做国内时事新闻
  • 手机怎么做电子书下载网站环球贸易网
  • 福田蒙派克10座车图片seo优化广告
  • html网站更新软文营销的成功案例
  • 太原建高铁站十大基本营销方式
  • 大学生兼职网站开发毕设论文有什么推广软件
  • 河津网站建设制作网站的步骤是什么
  • 人大网站建设情况汇报网站点击率查询
  • 网站建设公司如何找客户seo排名的影响因素有哪些
  • 最权威的做网站设计公司价格网络舆情监测
  • 有彩虹代刷源码怎么做网站seo怎么发文章 seo发布工具
  • 网站建设总体方案设计迅雷bt磁力链 最好用的搜索引擎
  • 上海网站建设找站霸网络抖音seo推广
  • 电脑网站做淘宝客chatgpt入口
  • 中湾建设网站知乎关键词优化软件
  • mui做网站徐州新站百度快照优化
  • 全国建设造价信息网站成人技能培训机构
  • 上海网站建设怎么弄百度公司官网
  • 青岛 正规网站空间找做网站的公司
  • 电商网站建设包括哪些自媒体平台app
  • 做汽车养护的网站深圳高端网站建设公司
  • 虚拟机做的网站怎么让外网访问推广方式有哪几种
  • 企业营销网站服务器1g够2024年小学生简短小新闻
  • 制作网站哪家便宜微信朋友圈软文大全
  • 江门企业自助建站系统上热门最火标题
  • 台州seo网站建设费用品牌整合营销推广
  • 重庆平台网站建设哪里有近期国内新闻摘抄
  • 建设网站导航东莞全网营销推广
  • 资深的网站建设网站免费推广的方法
  • 白河网站制作社群营销的案例