当前位置: 首页 > wzjs >正文

网站设计超链接怎么做专业培训大全

网站设计超链接怎么做,专业培训大全,qinmei wordpress,wordpress自适应手机端BIoU来自发表在2018年CVPR上的文章:《Improving Object Localization With Fitness NMS and Bounded IoU Loss》 论文针对现有目标检测方法只关注“足够好”的定位,而非“最优”的框,提出了一种考虑定位质量的NMS策略和BIoU loss。 这里不赘…

BIoU来自发表在2018年CVPR上的文章:《Improving Object Localization With Fitness NMS and Bounded IoU Loss》

论文针对现有目标检测方法只关注“足够好”的定位,而非“最优”的框,提出了一种考虑定位质量的NMS策略和BIoU loss。 

 这里不赘述NMS,只看loss相关的内容。

IoU 是检测性能的主要指标,但直接优化 IoU 很难(不可导、不光滑),因此通常使用 L1/L2 或 SmoothL1 损失,但它们并不直接优化 IoU。 Bounded IoU Loss(BIoU) 通过对 IoU 上界建模,最大化ROI(Region of Interest)和相关的ground truth边界框之间的IoU重叠,使得损失与 IoU 更紧密对应,又具备良好的优化特性。

公式: 

  代码来自MMDetection的实现:

def bounded_iou_loss(pred: Tensor,target: Tensor,beta: float = 0.2,eps: float = 1e-3) -> Tensor:"""BIoULoss.This is an implementation of paper`Improving Object Localization with Fitness NMS and Bounded IoU Loss.<https://arxiv.org/abs/1711.00164>`_.Args:pred (Tensor): Predicted bboxes of format (x1, y1, x2, y2),shape (n, 4).target (Tensor): Corresponding gt bboxes, shape (n, 4).beta (float, optional): Beta parameter in smoothl1.eps (float, optional): Epsilon to avoid NaN values.Return:Tensor: Loss tensor."""pred_ctrx = (pred[:, 0] + pred[:, 2]) * 0.5pred_ctry = (pred[:, 1] + pred[:, 3]) * 0.5pred_w = pred[:, 2] - pred[:, 0]pred_h = pred[:, 3] - pred[:, 1]with torch.no_grad():target_ctrx = (target[:, 0] + target[:, 2]) * 0.5target_ctry = (target[:, 1] + target[:, 3]) * 0.5target_w = target[:, 2] - target[:, 0]target_h = target[:, 3] - target[:, 1]dx = target_ctrx - pred_ctrxdy = target_ctry - pred_ctry# 这里的 “×2” 来自中心差异在边界框两侧的对称影响loss_dx = 1 - torch.max((target_w - 2 * dx.abs()) /(target_w + 2 * dx.abs() + eps), torch.zeros_like(dx))loss_dy = 1 - torch.max((target_h - 2 * dy.abs()) /(target_h + 2 * dy.abs() + eps), torch.zeros_like(dy))loss_dw = 1 - torch.min(target_w / (pred_w + eps), pred_w /(target_w + eps))loss_dh = 1 - torch.min(target_h / (pred_h + eps), pred_h /(target_h + eps))# view(..., -1) does not work for empty tensorloss_comb = torch.stack([loss_dx, loss_dy, loss_dw, loss_dh],dim=-1).flatten(1)loss = torch.where(loss_comb < beta, 0.5 * loss_comb * loss_comb / beta,loss_comb - 0.5 * beta)return loss# 辅助说明BIoU Loss
def smooth_l1_loss(pred: Tensor, target: Tensor, beta: float = 1.0) -> Tensor:"""Smooth L1 loss.Args:pred (Tensor): The prediction.target (Tensor): The learning target of the prediction.beta (float, optional): The threshold in the piecewise function.Defaults to 1.0.Returns:Tensor: Calculated loss"""assert beta > 0if target.numel() == 0:return pred.sum() * 0assert pred.size() == target.size()diff = torch.abs(pred - target)loss = torch.where(diff < beta, 0.5 * diff * diff / beta,diff - 0.5 * beta)return loss

RIoU来自发表在2020年ACM上的文章:《Single-Shot Two-Pronged Detector with Rectified IoU Loss》

论文提出了一种基于IoU的自适应定位损失,称为Rectified IoU(RIoU)损失,用于校正各种样本的梯度。校正后的IoU损失增加了高IoU样本的梯度,抑制了低IoU样本的梯度,提高了模型的整体定位精度。

用于解决单阶段目标检测中样本不平衡带来的梯度偏差问题!

但是如果随着IoU的增加而增加局部损失梯度的权重,那么将面临另一个问题,即当回归是完美的(IoU)时,梯度将继续增加→ 1, 这意味着当两个bbox完全重叠(IoU=1)时,将得到最大梯度,这是非常不合理的。

公式: 

 实现:

import torch
import torch.nn as nndef riou_loss(iou: torch.Tensor,loss_base: torch.Tensor,alpha: float = 2.0,gamma: float = 2.0,threshold: float = 0.5) -> torch.Tensor:"""Rectified IoU Loss (RIoU) implementation.Args:iou (Tensor): IoU between predicted and target boxes (shape: [N])loss_base (Tensor): Original IoU-based loss value (e.g., GIoU loss) (shape: [N])alpha (float): Scaling factor for high IoU samplesgamma (float): Focusing parameter (similar to focal loss)threshold (float): IoU threshold to apply amplificationReturns:Tensor: Rectified IoU loss (shape: [N])"""# Weight function: amplify high-quality samplesweight = torch.where(iou >= threshold,alpha * (iou ** gamma),iou)# Final loss: element-wise weightedloss = weight * loss_basereturn loss.mean()

α-IoU来自发表在2021年NeurlPS上的文章:《Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression》

边界框回归的核心任务是学习框的预测与真实框之间的匹配程度,IoU是最常见的评价指标。然而现有 IoU 损失(如 GIoU、DIoU、CIoU)虽然考虑了位置和重叠,但它们在优化目标、梯度平滑性或收敛速度上仍有局限。该工作出现的时候已经存在EIoU和Focal-EIoU了。

α-IoU通过一个参数 α 实现灵活控制误差加权,从而提升目标检测精度,并为小数据集和噪声框提供更多鲁棒性。

该论文使用Box-Cox变换将IoU loss变换到α-IoU loss,这是一种统计技术,用于将非正态分布的数据转换为更接近正态分布的形式。该方法由George Box和David Cox在1964年提出,广泛应用于数据预处理步骤中,特别是在需要满足正态性假设的统计分析或机器学习模型构建过程中。

然后推广到GIoU、DIoU和CIoU上,也就是在之前的公式惩罚项上加入α,详细地推导与说明请参考该论文:

 α 对不同的模型或数据集不太敏感,在大多数情况下 α = 3 始终表现良好。α-IoU 损失族可以很容易地应用于在干净和嘈杂的 bbox 设置下改进最先进的检测器,而无需向这些模型引入额外的参数(对训练算法进行任何修改),也不增加它们的训练/推理时间。 

但是应用到自定义数据集上效果如何还是需要结合具体问题具体分析 !

def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=2, eps=1e-9):# Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4box2 = box2.T# Get the coordinates of bounding boxesif x1y1x2y2:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]else:  # transform from xywh to xyxyb1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2# Intersection areainter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)# Union Areaw1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + epsw2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + epsunion = w1 * h1 + w2 * h2 - inter + eps# change iou into pow(iou+eps)# iou = inter / unioniou = torch.pow(inter/union + eps, alpha)# beta = 2 * alphaif GIoU or DIoU or CIoU:cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) widthch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex heightif CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonalrho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha  # center distanceif DIoU:return iou - rho2 / c2  # DIoUelif CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)with torch.no_grad():alpha_ciou = v / ((1 + eps) - inter / union + v)# return iou - (rho2 / c2 + v * alpha_ciou)  # CIoUreturn iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoUelse:  # GIoU https://arxiv.org/pdf/1902.09630.pdf# c_area = cw * ch + eps  # convex area# return iou - (c_area - union) / c_area  # GIoUc_area = torch.max(cw * ch + eps, union) # convex areareturn iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoUelse:return iou # torch.log(iou+eps) or iou

http://www.dtcms.com/wzjs/445065.html

相关文章:

  • 个人做公司网站自媒体培训学校
  • 导航网站开发进一步优化落实
  • 佛山网站建设 骏域网站建设排名前十的小说
  • 威海北京网站建设日本疫情最新数据
  • 睢宁做网站中国国家人才培训网官网
  • 电子商务网站的类型北京seo网站优化培训
  • 扬州市住房建设局网站站长之家爱站网
  • 兴宁电子商务网站建设谷歌优化排名怎么做
  • 可以做外链的视频网站seo搜索引擎优化人才
  • h5技术做网站查关键词排名工具app
  • 公司网站微信推广重庆网
  • 青岛做外贸网站哪家好网页制作源代码
  • 大型网站的建设包括那些内容博客seo怎么做
  • 哪里有好网站设计西安seo网络优化公司
  • 网站开发的软件环境seo研究中心怎么了
  • 免费网站下载软件免费网络搭建是干什么的
  • 建设手机网站平台信息流广告案例
  • 南宁网站建设多少钱黄页推广引流
  • 做的网站百度搜不到微信拓客的最新方法
  • 建站都需要什么网站建设高端公司
  • 长宁苏州网站建设公司域名解析ip地址查询
  • 免费域名空间申请哪些行业适合做seo
  • 网站权重2的网站企业网站建设专业服务
  • 公司的网站推广费怎么做分录搜索引擎排名营销
  • 怎样做自己的网站和发布网站免费引流app下载
  • 梁山做网站外贸建站
  • wordpress 影楼主题搜索引擎优化seo信息
  • 北京住房城乡建设部网站首页歌尔股份砍单
  • 官方网站开发制作公司会员卡营销策划方案
  • 网站建设怎么销售如何创建属于自己的网站