当前位置: 首页 > wzjs >正文

网站ico怎么用室内设计网站

网站ico怎么用,室内设计网站,建设个人银行网站,开展农业信息网站建设工作一、【模板】前缀和 题目解析 这道题,给定一个长度为n的数组,和m次询问; 每一次询问给出两个整数l和r,让我们求出区间[l , r]中所有数的和,然后输出。 算法思路 这道题暴力解法: 首先是m次查询&#xff0…

一、【模板】前缀和

题目解析

在这里插入图片描述

这道题,给定一个长度为n的数组,和m次询问;

每一次询问给出两个整数lr,让我们求出区间[l , r]中所有数的和,然后输出。

算法思路

这道题暴力解法:

首先是m次查询(m次测试),每一个给定一个lr,让我们求区间[l , r]中所有数的和。

暴力解法就非常简单了,直接遍历区间[l , r],求出区间中所有数的和即可。

暴力解法时间复杂度O(m * n),也就是O(n^2)级别的时间复杂度;

暴力解法会超时,我们这里想一想可不可以对暴力解法进行一些优化:

  1. 首先m次查询,很显然是不能进行优化的。
  2. 我们只能对求区间[l , r]中所有数的和进行优化。

那如何优化呢?

遍历区间[l , r]来求和时间复杂度是O(n),那我们可不可以用O(1)的复杂度来获得区间[l , r]中所有数的和呢?

在这里插入图片描述

通过上图,我们可以发现:我们要求的[l , r]区间的和s就等于区间[1 , r]的和 减去区间[1 , l]的和。

前缀和

所以,我们可以通过运算来用O(1)的时间复杂度获得区间[l , r]中所有数的和;但是我们要用到区间[1 , l]和区间[1 , r]中所有数的和。

所以我们预先既要处理一个前缀和数组dp

  • 其中dp[i]:表示区间[1 , i]中所有数的和。
  • 填写前缀和数组:dp[i] = dp[i-1] + arr[i](也就是前面所有数的和加上当前位置的数)。
  • 计算区间[l , r]中所有数的和:dp[r] - dp[l-1](这里区间[l , r]包含l位置,所以要减去dp[i-1]

这里可以说:前缀和和动态规划的大致思路非常相似:

状态表示dp[i]表示区间[1 , i]中所有数的和

状态转移方程dp[i] = dp[i] + arr[i];

获取区间[l , r]中所有数的和s = dp[r] - dp[l-1];

代码实现

#include <cmath>
#include <iostream>
using namespace std;
const int N = 100001;
long long dp[N];
int arr[N];
int n, m;
int main() {cin >> n >> m;for (int i = 1; i <= n; i++) {cin >> arr[i];dp[i] = dp[i - 1] + arr[i];}while (m--) {int l, r;cin >> l >> r;cout << dp[r] - dp[l - 1] << endl;}return 0;
}

二、【模板】二维前缀和

题目解析

在这里插入图片描述

对于这道题,给定一个n*m的二维数组,以及q次查询;

每一次查询给定x1,x2,y1,y2,我们要求以(x1,y1)为左上角,(x2,y2)为右下角的子矩阵中所有数的和。

算法思路

暴力解法:

q次查询,每一查询给定x1,y1,x2,y2,遍历整个子矩阵进行求和操作。

时间复杂度:O(n*m*q),也就是O(n^3)级别的时间复杂度。

很显然会超时,对暴力解法进行优化,很显然只能优化求子矩阵中所有元素的和。

暴力解法中,遍历整个子矩阵去求和,这样太麻烦了;我们可不可以使用O(1)的时间复杂度拿到子矩阵中所有数的和?

当然也是可以的,这就像数学当中求一块面积的和一样。

在这里插入图片描述

如上图所示,我们要求以(x1 , y1)为左上角,(x2 , y2)为右下角的子矩阵中所有数的和,也就是S

我们只要知道s1(以(1 , 1)为左上角,(x1-1 , y1)为右下角的子矩阵的和)、s2(以(1 , 1)为左上角,(x2, y1-1)为右下角的子矩阵的和)、s3(以(1 , 1)为左上角,(x1-1 , y1-1)为右下角的子矩阵的和)以及s4(以(1 , 1)为左上角,(x2 , y2)为右下角的子矩阵的和)。

我们就可以通过数学运算来求Ss = s4 - s1 - s2 + s3

也就是s = dp[x2][y2] - dp[x2][y1-1] - dp[x1-1][y2] + dp[x1-1][y1-1]

这样我们在填写前缀和表时:

在这里插入图片描述

dp[i][j] = dp[i][j-1] +dp[i-1][j] - dp[i-1][j-1] + arr[i][j]

这里也可以将前缀和理解为动态规划

状态表示dp[i][j]表示以(1,1)为左上角,(i,j)为右下角的子矩阵中所有数的和。

状态转移方程dp[i][j] = dp[i][j-1] +dp[i-1][j] - dp[i-1][j-1] + arr[i][j]

计算子矩阵中所有数的和s = dp[x2][y2] - dp[x2][y1-1] - dp[x1-1][y2] + dp[x1-1][y1-1]

代码实现

#include <iostream>
using namespace std;
const int N = 1001;
int arr[N][N];
long long dp[N][N];
int n, m, q;
int x1, x2, y1, y2;int main() {cin >> n >> m >> q;for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {cin >> arr[i][j];dp[i][j] = dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1] + arr[i][j];}}while (q--) {cin >> x1 >> y1 >> x2 >> y2;cout << (dp[x2][y2] - dp[x1 - 1][y2] - dp[x2][y1 - 1] + dp[x1 - 1][y1 - 1]) << endl;}return 0;
}

总结

这里简单总结一下前缀和算法:

首先前缀和算法可以用来快速的求出子数组/子矩阵中所有数的和,在涉及到求子数组/子矩阵的和时,能够利用前缀和算法来快速的求和。

其次,使用前缀和,我们就要预先构建一个前缀和数组并填写该数组;(和动态规划类似)

注意:在构建前缀和数组时,通常下标从1开始,因为在填写数组时要用到dp[i-1]

最后,前缀和算法就是空间换时间,通过预先构建前缀和数组,让我们能够在O(1)的数据复杂度拿到子数组/子矩阵的和。

到这里本篇文章内容就结束了,感谢各位大佬的支持

http://www.dtcms.com/wzjs/440821.html

相关文章:

  • 湖南网站建设磐石网络口碑好百度竞价推广收费标准
  • 360建筑网挂靠靠谱吗seo推广骗局
  • 乡镇网站建设和培训六种常见的网络广告类型
  • 杭州seo排名优化海外aso优化
  • 做网站的毕业设计seo营销推广全程实例
  • 手机网站后台管理微指数查询
  • 秦皇岛网站建设公司河北百度推广客服电话
  • 聊城做网站公司如何做网站推广广告
  • 有没有做美食的网站整合网络营销
  • 做采集网站赚钱识图
  • 微信网站如何做镇江交叉口优化
  • 英文外贸网站制作论坛如何做seo
  • 用明星名字做网站个人网站建站教程
  • 南京seo优化公司手机优化
  • wordpress 加速乐苏州seo关键词优化排名
  • 镇江市网站建设武汉刚刚发生的新闻
  • 一起做网店一件代发网魔贝课凡seo
  • 手机网站建设和电商网站设计
  • 佛山网站制作网站设计网络seo排名
  • 网页制作模板的网站免费销售培训课程一般有哪些
  • jsp网站 iis郑州seo技术外包
  • 做商业网站要交税吗网络推广公司经营范围
  • 如何做企业网站开发百度注册入口
  • 韩城网站建设刷赞网站推广空间免费
  • 冠县哪做网站公司网站建设推广
  • 长沙有实力的关键词优化价格seo关键词优化排名公司
  • 免费空间最大的网盘seo关键词优化推广
  • 郑州网站建设企起网站下载
  • 做建网站的公司项目外包平台
  • 日照网站建设aso优化排名推广