当前位置: 首页 > wzjs >正文

外企网站建设公司网上互联网推广

外企网站建设公司,网上互联网推广,iis wordpress安装教程,正规的ui设计培训学校引言 Transformer 架构自《Attention Is All You Need》论文发表以来,在自然语言处理领域引起了巨大的变革。它摒弃了传统的循环结构,完全基于注意力机制,显著提高了处理序列数据的效率和性能。本文将通过对一个具体的项目代码结构进行详细分…

引言

Transformer 架构自《Attention Is All You Need》论文发表以来,在自然语言处理领域引起了巨大的变革。它摒弃了传统的循环结构,完全基于注意力机制,显著提高了处理序列数据的效率和性能。本文将通过对一个具体的项目代码结构进行详细分析,带领大家深入了解 Transformer 模型的数据处理部分。

项目结构概述

首先,让我们来看看项目的整体结构:(参考项目代码)

transformer-master
├── paper\
│   └── attention is all you need.pdf
├── image\
├── models\
│   ├── __init__.py
│   ├── blocks\
│   │   ├── __init__.py
│   │   ├── decoder_layer.py
│   │   └── encoder_layer.py
│   ├── embedding\
│   │   ├── __init__.py
│   │   ├── positional_encoding.py
│   │   ├── token_embeddings.py
│   │   └── transformer_embedding.py
│   ├── layers\
│   │   ├── __init__.py
│   │   ├── layer_norm.py
│   │   ├── multi_head_attention.py
│   │   ├── position_wise_feedforward.py
│   │   └── scaled_dot_product_attention.py
│   └── model\
│       ├── __init__.py
│       ├── encoder.py
│       ├── decoder.py
│       └── transformer.py
├── saved\ 
├── util\
│   ├── __init__.py
│   ├── bleu.py
│   ├── data_loader.py
│   ├── epoch_timer.py
│   └── tokenizer.py
├── conf.py
├── data.py
├── graph.py
├── train.py
└── README.md

这个项目结构清晰,包含了论文、模型模块、数据处理、训练脚本等部分。其中,data.py 文件负责数据的处理和准备,是模型训练的基础。

数据处理流程

数据处理流程图

Vocabulary and Indexes
Data Preparation
Initialization
Get source pad index
Get target pad index
Get target sos index
Get source vocab size
Get target vocab size
Make dataset
Build vocabulary
Create data iterators
Import configurations
Import DataLoader
Import Tokenizer
Create Tokenizer instance
Create DataLoader instance

从流程图中可以看出,数据处理主要分为三个阶段:初始化、数据准备和获取词汇表及索引。

数据处理代码及解析

"""
@author : Hyunwoong
@when : 2019-10-29
@homepage : https://github.com/gusdnd852
"""
from conf import *
from util.data_loader import DataLoader
from util.tokenizer import Tokenizertokenizer = Tokenizer()
loader = DataLoader(ext=('.en', '.de'),tokenize_en=tokenizer.tokenize_en,tokenize_de=tokenizer.tokenize_de,init_token='<sos>',eos_token='<eos>')train, valid, test = loader.make_dataset()
loader.build_vocab(train_data=train, min_freq=2)
train_iter, valid_iter, test_iter = loader.make_iter(train, valid, test,batch_size=batch_size,device=device)src_pad_idx = loader.source.vocab.stoi['<pad>']
trg_pad_idx = loader.target.vocab.stoi['<pad>']
trg_sos_idx = loader.target.vocab.stoi['<sos>']enc_voc_size = len(loader.source.vocab)
dec_voc_size = len(loader.target.vocab)

1. 导入模块和配置

from conf import *
from util.data_loader import DataLoader
from util.tokenizer import Tokenizer
  • from conf import *:从 conf 模块导入所有内容,通常包含全局配置,如路径、参数等,方便在整个项目中使用统一的配置。
  • from util.data_loader import DataLoader:导入 DataLoader 类,它负责数据的加载和处理,包括数据集的划分、迭代器的创建等。
  • from util.tokenizer import Tokenizer:导入 Tokenizer 类,用于文本的分词和编码,将文本转换为模型可以处理的形式。

2. 初始化分词器和数据加载器

tokenizer = Tokenizer()
loader = DataLoader(ext=('.en', '.de'),tokenize_en=tokenizer.tokenize_en,tokenize_de=tokenizer.tokenize_de,init_token='<sos>',eos_token='<eos>')
  • 创建 Tokenizer 实例,用于后续的分词操作。
  • 创建 DataLoader 实例,指定:
    • ext:数据文件的扩展名,这里指定为英语(.en)和德语(.de),表示处理的是英德双语数据。
    • tokenize_entokenize_de:分别指定英语和德语的分词函数,这些函数来自 Tokenizer 实例,确保不同语言的文本能正确分词。
    • init_tokeneos_token:分别指定序列的开始和结束标记,这里使用 <sos><eos>,方便模型识别序列的边界。

3. 加载和划分数据集

train, valid, test = loader.make_dataset()

调用 DataLoader 实例的 make_dataset 方法,加载数据并划分为训练集、验证集和测试集。训练集用于模型的训练,验证集用于调整模型的超参数,测试集用于评估模型的最终性能。

4. 构建词汇表

loader.build_vocab(train_data=train, min_freq=2)

调用 DataLoader 实例的 build_vocab 方法,基于训练数据构建词汇表。min_freq=2 表示词汇表中只包含出现频率至少为 2 的单词,这样可以过滤掉一些罕见的单词,减少词汇表的大小,提高模型的训练效率。

5. 创建数据迭代器

train_iter, valid_iter, test_iter = loader.make_iter(train, valid, test,batch_size=batch_size,device=device)

调用 DataLoader 实例的 make_iter 方法,为训练集、验证集和测试集创建数据迭代器。这些迭代器将数据分批加载到模型中,batch_size 指定了每批数据的大小,device 指定了数据加载到的设备(如 CPU 或 GPU)。分批处理数据可以减少内存的使用,提高训练的效率。

6. 获取特殊标记的索引

src_pad_idx = loader.source.vocab.stoi['<pad>']
trg_pad_idx = loader.target.vocab.stoi['<pad>']
trg_sos_idx = loader.target.vocab.stoi['<sos>']

从源语言和目标语言的词汇表中获取 <pad>(填充标记)和 <sos>(序列开始标记)的索引。这些索引在后续的模型训练和推理中会被用到,具体意义如下:

  • <pad> 索引:在处理不同长度的序列时,为了能够将它们批量输入到神经网络中,通常需要对序列进行填充或截断,使其具有相同的长度。<pad> 标记用于填充较短的序列,使其与最长序列的长度一致。在模型训练过程中,通过识别 <pad> 标记的索引,模型可以忽略这些填充部分的影响,只关注实际有效的序列内容。
  • <sos> 索引:<sos> 标记用于标识序列的开始位置,这对于生成式模型(如文本生成、机器翻译中的解码器)尤为重要。它告诉模型从哪里开始生成或解码序列。在解码过程中,模型通常会从 <sos> 标记开始,逐步生成后续的单词或字符,直到遇到序列结束标记(如 <eos>)。

以下是一个简短的例程,展示了如何在模型训练中使用这些特殊标记的索引:

假设我们已经有一个训练好的seq2seq模型,以及相应的数据加载器
#...(模型和数据加载器的初始化代码省略)...获取特殊标记的索引
src_pad_idx = loader.source.vocab.stoi['<pad>']
trg_pad_idx = loader.target.vocab.stoi['<pad>']
trg_sos_idx = loader.target.vocab.stoi['<sos>']在训练循环中
for batch in train_iter:src_seq, trg_seq = batch# 忽略填充部分的影响(具体实现取决于模型)#...(处理src_seq和trg_seq,可能包括掩码操作等)...# 解码器从<sos>标记开始生成序列decoder_output = model.decode(encoder_output, start_token=trg_sos_idx)#...(计算损失、更新模型参数等)...

7. 获取词汇表大小

enc_voc_size = len(loader.source.vocab)
dec_voc_size = len(loader.target.vocab)

获取源语言和目标语言词汇表的大小,这些大小通常用于定义模型中的嵌入层大小。嵌入层将单词转换为向量表示,词汇表的大小决定了嵌入层的输入维度。

Transformer模型数据处理的基本流程,包括数据的加载、分词、划分、构建词汇表以及创建数据迭代器等操作。在实际应用中,我们可以根据具体的任务和数据特点对这些步骤进行调整和优化。

http://www.dtcms.com/wzjs/419199.html

相关文章:

  • 宝塔建站wordpress深圳百度推广代理商
  • 北京网站策划联系电话企业文化建设方案
  • 微商城网站建设新闻重庆seo推广外包
  • 手机软件下载网站公司网站推广技巧
  • 肇庆做网站设计公司深圳seo优化排名
  • 简述网站建设的步骤企业推广网站
  • 去柬埔寨做网站是传销吗兰州做网站的公司
  • 佛山网络公司网站建设百度广告投放价格
  • 成都微信网站建设公司百度seo排名优化费用
  • 上海平面设计公司排行榜百度seo刷排名网址
  • 深圳网络营销方案郑州seo排名第一
  • 网站开发补全免费创建网站
  • 免费logo设计的网站南京百度seo排名
  • 做网站时分类标题和分类描述网络宣传推广
  • wordpress访客ip地址插件七台河网站seo
  • wordpress去掉评论界面seo培训讲师招聘
  • 建立一个网站需要会什么软件数据库营销
  • 网站建设部署视频教程成都网站建设技术支持
  • pb 做网站合肥网站建设程序
  • 网站建设排名公司哪家好清远今日头条新闻
  • 昆明 网站建设360建网站
  • 电力建设网站进不去seo快速排名案例
  • 昆山网站建设需要多少钱百度指数的作用
  • 网站外链建设免费公司网站建站
  • 微信小程序开发模板网站信息发布
  • 网站建设入门教程视频百度培训
  • 哪些网站专门做细胞的网络营销软文范文
  • 湖南智能网站建设哪里好整合营销活动策划方案
  • 网站初期内容云和数据培训机构怎么样
  • 哪个网站有做商标在线注册免费域名