当前位置: 首页 > wzjs >正文

Wordpress多站点共享用户app优化排名

Wordpress多站点共享用户,app优化排名,学科网站建设,wordpress 页面如何打开评论1. TFT 简介 Temporal Fusion Transformer(TFT)模型是一种专为时间序列预测设计的高级深度学习模型。它结合了神经网络的多种机制处理时间序列数据中的复杂关系。TFT 由 Lim et al. 于 2019年提出,旨在处理时间序列中的不确定性和多尺度的依…

1. TFT 简介

Temporal Fusion Transformer(TFT)模型是一种专为时间序列预测设计的高级深度学习模型。它结合了神经网络的多种机制处理时间序列数据中的复杂关系。TFT 由 Lim et al. 于 2019年提出,旨在处理时间序列中的不确定性和多尺度的依赖关系

TFT引入了多个新颖的理念,具体包括:

  • 静态协变量编码器,为网络其他部分的使用对上下文向量进行编码
  • 贯穿始终的门控机制和依赖样本的变量选择,以最小化无关输入的影响
  • 一个序列到序列层,对已知和观测到的输入进行局部处理
  • 一个时间自注意力解码器,用于学习数据集中存在的任何长期依赖关系

上述专门组件的使用有助于实现可解释性,帮助用户识别:预测问题中的全局重要的变量、持续的时间模式、重大事件

2. TFT 模型的优势

  • 动态特征选择:TFT 动态地为每个时间步选择最重要的特征,这使得模型在处理高维输入和噪声数据时更具鲁棒性。
  • 多尺度时间依赖:通过结合 LSTM 编码器/解码器和自注意力机制,TFT 能够捕获不同时间尺度上的依赖关系。
  • 可解释性:相比于传统的黑箱模型,TFT 通过变量选择网络和注意力机制提供了一定程度的模型解释性,帮助理解模型的决策过程。
  • 灵活性:TFT 可用于处理多种类型的时间序列数据,包括但不限于多变量、多步预测和带有缺失值的序列。

3. TFT的核心功能

  1. 输入层和嵌入层
    1. 输入层:处理不同类型的输入,包括时间序列输入(历史和未来)和静态输入(不随时间变化的特征)。
    2. 嵌入层(Embedding Layer):对分类特征进行嵌入映射,使其转化为可供模型使用的连续特征表示。
  2. ** Variable Selection Network(变量选择网络)**:
    1. 目的:动态选择最相关的输入特征。时间序列数据往往包含大量的特征,TFT 通过变量选择网络为每个时间步动态地选择最重要的特征。
    2. 实现:通过门控残差网络(GRN, Gated Residual Network)对每个输入特征单独处理,计算特征的重要性权重。
  3. LSTM编码器/解码器
    1. 目的:学习时间序列数据的顺序信息和长期依赖关系。
    2. 实现:使用双向长短期记忆网络(BiLSTM)进行编码,通过捕获前后信息来增强特征表达;解码器则采用单向LSTM来预测未来的时间步。
  4. 自注意力机制(Self-Attention Mechanism)
    1. 目的:捕获时间序列中的长期依赖和全局关系。
    2. 实现:引入多头自注意力机制(Multi-Head Self-Attention),使模型能够关注不同时间步之间的关系和模式,而不仅仅是局部的时间依赖性。
  5. Gated Residual Network(门控残差网络)
    1. 目的:通过残差连接学习复杂的特征关系,同时利用门控机制控制信息流动。
    2. 实现:GRN 包含了全连接层、非线性激活函数(如 smish)、门控机制(GLU)和层归一化等,可以学习更深层次的特征模式。
  6. 解释性模块
    1. 目的:TFT 还包含解释性模块,能够输出每个特征的重要性权重,以解释模型的预测决策。
    2. 实现:通过整合变量选择权重和自注意力权重,提供特征的时间依赖性解释和静态特征的重要性。

4. TFT的应用

TFT模型广泛应用于各种需要时间序列预测的领域,包括但不限于:

  • 金融预测:如股票价格预测、风险管理等。
  • 能源预测:如电力需求预测、能源生产调度等。
  • 销售预测:预测产品销售量,库存管理等。
  • 医疗健康:如病患监测和疾病进展预测。
    1. TFT 架构的优点:
      1. 能够使用丰富的特征:TFT 支持三种不同类型的特征,外生类别/静态特征、具有已知输入到未来的时态数据(仅到目前已知的时态数据)、具有未知输入的未来时态数据。
      2. 区间预测:TFT 使用分位数损失来产生除实际预测之外的预测区间
      3. 异构时间序列:允许训练具有不同分布的多个时间序列。TFT设计将处理分为两个部分:局部处理集中于特定事件的特征,而全局处理记录所有时间序列的一版特征
      4. 可解释性:TFT 的核心是基于 Transformer 的体系结构,该模型引入的多头注意力机制,在需要对模型进行解释时提供了关于特征重要性的额外知识。另外一个性能良好的 DNN 实现是 Mulit-Horizon Quantile Recurrent Forecaster (MQRNN)。但是它没有提供如何解释这些特征重要程度的指导
      5. 性能:在测试中,TFT 优于 DNN 的模型,如 DeepAR、MQRNN 和深度状态空间模型(Deep Space-state Models)以及传统统计模型(ARIMA、DSSM等)
      6. 与传统方法不同,TFT的多头注意力提供了特征可解释性。通过TFT的多头注意力天健一个新的矩阵或分组,允许不同的头共享一些权重,然后可以根据季节性分析来解释这些全红的含义

 5.代码地址及其讲解

https://space.bilibili.com/51422950?spm_id_from=333.1007.0.0

http://www.dtcms.com/wzjs/41325.html

相关文章:

  • 重庆网站服务建设制作app软件平台
  • 淘宝上可以做网站吗关键词seo排名优化推荐
  • 网站建设免费的百度扫一扫识别图片
  • 网站开发需要用到哪些技术营销比较成功的品牌
  • 做注册任务的网站有哪些互联网推广渠道
  • 自己搭建ddns动态域名解析西安百度seo排名
  • 做网站JSP代码上海排名优化推广工具
  • 网站的模块怎么做怎么在百度推广自己的网站
  • 产品包装设计创意西安企业seo外包服务公司
  • 做一个网站大概多少钱网站一级域名和二级域名
  • 品牌网站建设 蝌蚪小7百度网盘怎么找片
  • 石龙网站建设百度关键词排名软件
  • 怎么做帖子网站百度查看订单
  • 夜间正能量网站入口免费下载seo查询优化
  • 泰安营销型网站建设数据分析师培训需要多少钱
  • 网站建好了 怎么建后台长沙官网seo收费
  • 北京海淀中关村找工作网站建站系统哪个比较好
  • 夜里十大禁用b站app百度建站
  • 网站备案有用免费生成短链接
  • 网站分页符怎么做seo诊断服务
  • 郑州正规的网站制作旅游网站网页设计
  • 简单的做图网站百度账号人工申诉
  • 建网站挣钱靠谱吗关键词优化排名查询
  • 网站开发业务流程网络营销策略分析方法
  • 网站创作规划最近发生的热点事件
  • 自己做网站的流程视频教程信息流优化师工作内容
  • 小榄网站建设百度官方网站登录
  • 建网站需要哪些费用新媒体运营怎么自学
  • 辽宁省城乡和住房建设厅网站中国第一营销网
  • 云南网站建设崇左独立站seo建站系统