当前位置: 首页 > wzjs >正文

网站空间的权限深圳白帽优化

网站空间的权限,深圳白帽优化,wordpress访问格式丢失,做网站用什么格式做好tf1.x和tf2.x在使用上的区别和联系是什么 TensorFlow 1.x 和 2.x 在使用上有显著差异,主要体现在编程范式、API 设计和易用性上,但二者仍共享相同的核心目标(深度学习框架)和底层计算引擎。以下是主要区别和联系: 主要…

tf1.x和tf2.x在使用上的区别和联系是什么

TensorFlow 1.x 和 2.x 在使用上有显著差异,主要体现在编程范式、API 设计和易用性上,但二者仍共享相同的核心目标(深度学习框架)和底层计算引擎。以下是主要区别和联系:


主要区别

1. 执行模式(Eager Execution vs. 静态计算图)
  • TF1.x

    • 基于静态计算图,需先定义计算图(tf.Graph),再通过 tf.Session 运行。
    • 代码分为“定义图”和“执行图”两步,调试困难(如使用 tf.Print)。
    # TF1.x 示例:静态图 + Session
    a = tf.placeholder(tf.float32)
    b = tf.placeholder(tf.float32)
    c = a + b
    with tf.Session() as sess:result = sess.run(c, feed_dict={a: 1, b: 2})  # 输出 3.0
    
  • TF2.x

    • 默认启用 Eager Execution,代码像普通 Python 一样逐行执行,无需构建静态图或 Session
    • 动态计算更直观,支持直接打印中间结果,调试方便。
    # TF2.x 示例:Eager Execution
    a = tf.constant(1.0)
    b = tf.constant(2.0)
    c = a + b  # 直接计算,结果 3.0
    
2. API 简化与整合
  • TF1.x

    • API 分散且冗余(如 tf.layerstf.contribtf.keras 并存)。
    • 需要手动管理变量作用域(如 tf.variable_scopetf.get_variable)。
  • TF2.x

    • API 大幅简化,废弃 tf.contrib,推荐使用 tf.keras 作为高阶 API。
    • 变量管理自动化(如通过 tf.keras.layers 自动处理变量)。
    • 优化器、损失函数等统一整合到 tf.keras 模块中。
3. 计算图的构建方式
  • TF1.x

    • 显式构建静态图,依赖 tf.placeholderSession.runfeed_dict 传参。
    • 需要手动初始化变量(如 tf.global_variables_initializer())。
  • TF2.x

    • 使用 tf.function 装饰器将 Python 函数转换为计算图(Autograph),兼顾灵活性和性能。
    • 无需 placeholder,直接传递张量或 NumPy 数组。
    @tf.function  # 将函数转换为计算图
    def add(a, b):return a + b
    print(add(tf.constant(1), tf.constant(2)))  # 输出 3
    
4. Keras 深度集成
  • TF1.x

    • Keras 作为独立库(tf.keras 是可选模块),与 TensorFlow 原生 API 并存。
  • TF2.x

    • Keras 成为官方高阶 API,推荐用于模型构建、训练和部署。
    • 使用 tf.keras.Modeltf.keras.layers 替代 TF1.x 的 tf.layers
5. 其他工具链变化
  • 数据集加载

    • TF1.x 使用 tf.data、队列(tf.QueueBase)等;
    • TF2.x 更推荐 tf.data.Dataset,简化数据管道。
  • 分布式训练

    • TF2.x 引入 tf.distribute 策略,支持多 GPU/TPU 训练更简单。
  • 模型保存与部署

    • TF1.x 依赖 SavedModeltf.saved_model
    • TF2.x 推荐 tf.keras.models.save_model()tf.saved_model.save()

主要联系

  1. 核心目标一致

    • 均为深度学习框架,支持张量计算、自动微分、分布式训练等。
  2. 底层引擎相同

    • 使用相同的计算后端(如 GPU/TPU 加速、XLA 编译器)。
  3. 计算图机制延续

    • TF2.x 通过 tf.functionAutoGraph 保留计算图能力,兼容 TF1.x 的图模式。
  4. 兼容性支持

    • TF2.x 提供 tf.compat.v1 模块,允许逐步迁移旧代码。
    • 可通过 tf.compat.v1.disable_v2_behavior() 禁用 TF2 特性,模拟 TF1.x 环境。

迁移建议

  1. 新项目优先使用 TF2.x

    • 利用 Eager Execution 快速原型开发,通过 tf.function 优化性能。
    • 使用 tf.keras 构建模型,简化代码。
  2. 旧项目迁移步骤

    • 使用 tf_upgrade_v2 工具自动转换部分代码。
    • 替换 tf.Sessionplaceholder 为 Eager Execution 或 tf.function
    • tf.layers 替换为 tf.keras.layers

总结

  • TF1.x:适合需要精细控制计算图的场景,但代码冗长且调试复杂。
  • TF2.x:更易用、更 Pythonic,推荐新项目使用,同时兼容旧代码。
  • 联系:共享底层引擎,TF2.x 通过 tf.functiontf.keras 平衡灵活性与性能。
http://www.dtcms.com/wzjs/40182.html

相关文章:

  • 徐州企业网站建设公司吉林网站seo
  • 连网站建设百度爱采购推广效果怎么样?
  • 网站如何连接微信支付网络推广引流是做什么工作
  • 苏州专业高端网站建设整站优化 快速排名
  • 移动的网络网站建设湖南靠谱seo优化
  • 学会网站建设方案大数据营销系统
  • 如何查询网站打开速度做网站哪个公司最好
  • 白云电子商务网站建设百度广告投放价格
  • 网站甲假发头套真头发做的假发网店运营推广实训
  • 单位做网站的目的百度搜索指数排行榜
  • 用java做信息发布网站网站关键词在线优化
  • 深圳网络技术有限公司郑州seo实战培训
  • 推广员网站怎么做深圳优化seo
  • 网站360自然排名要怎么做bing搜索国内版
  • 网站的图片大小规定网站免费推广网站
  • 南京网站建设一条龙已备案域名购买平台
  • 做日本的网站好卖的东西最新网站查询工具
  • 郴州做网站 郴网互联搜索广告排名
  • 如何运营一个行业网站win10必做的优化
  • 做网站只解析www的会怎么样宁波seo怎么做推广渠道
  • 北京展览网站建设营销网络推广哪家好
  • 做网站 用虚拟服务器iis陕西seo主管
  • 网站建设案例教程关键词分类工具
  • 成都网站建设名录网络营销措施有哪些
  • 手机创建微信公众号seo入门培训学多久
  • 网站建设报价表百度网址大全官网
  • 做商演任务的网站广告投放是什么工作
  • 制作网站用c 做前台找资源最好的是哪个软件
  • 建立网站有什么好处软文投放平台有哪些
  • 网站框架软文推广例子