当前位置: 首页 > wzjs >正文

网站建设选哪家公司信息流广告加盟代理

网站建设选哪家公司,信息流广告加盟代理,属于b2b平台有哪些,兰州政府网站建设文章目录 动态规划01背包小练一下01背包网格图上的DP完全背包 最长公共字符串最长递增子序列 动态规划 动态规划:确定好状态方程,我们常常是确定前 当状态来到 i 时,前 i 个物体的状态是怎么样的,我们并不是从一个点去考虑&#x…

文章目录

  • 动态规划
    • 01背包
      • 小练一下
      • 01背包
      • 网格图上的DP
      • 完全背包
    • 最长公共字符串
    • 最长递增子序列

动态规划

在这里插入图片描述
在这里插入图片描述

  • 动态规划:确定好状态方程,我们常常是确定前 当状态来到 i 时,前 i 个物体的状态是怎么样的,我们并不是从一个点去考虑,也就是说虽然我们分割问题,但是问题是相互联系的,那么这就是区别于递归的本质区别

在这里插入图片描述

01背包

在这里插入图片描述
由于不能拆开,那就是DP 问题,如果能拆开,那就是贪心问题

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

小练一下

01背包

在这里插入图片描述

import os
import sys# 请在此输入您的代码N,V = map(int,input().split())w = []
v = []
w.append(0)
v.append(0)for i in range(N):a,b = map(int,input().split())w.append(a)v.append(b)dp = [[0]*(V+1) for _ in range(N+1)]for i in range(1,N+1):# 取出第i 个物品for j in range(V+1):if j-w[i]<0:dp[i][j]=dp[i-1][j]else:dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i])print(dp[N][V])

在这里插入图片描述
在这里插入图片描述

  • 可以对空间进行优化:只用添加两个变量来存储new,old 就是利用滚动数组,两个数组即可解决

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

import os
import sysV = int(input())#####箱子容量
n = int(input())####物品数量
l = [0]####各自体积
for i in range(n):####输入体积l.append(int(input()))
dp = [[0 for j in range(V+1)]for i in range(n+1)]for i in range(1,n+1):###for j in range(1,V+1):####if j < l[i]:####dp[i][j] = dp[i-1][j]else:dp[i][j]=max(dp[i-1][j],dp[i-1][j-l[i]]+l[i])###
print(V-dp[n][V])

同样的思路:还是用二维数组存储,dp[i][j]表示 前i 个物体在空间j 的情况下,所能放的空间的大小

网格图上的DP

在这里插入图片描述

  • 对于网格的问题,咋一看好像可以用搜索来解决,但是搜索的话可能就会超时,所以我们可以用动态规划来做,那么如何进行定义?
    dp[i][j] 就是走到(i,j) 的时候的路径数,那么就有 动态规划的式子 :
    dp[i][j] = dp[i-1][j] + dp[i][j-1] 得来
    对于不能到达的地方,就直接 设置dp 值为0即可
    巧妙地地方:让出发点以及🐎所在地点以及终点都偏移,这样就可以方便解决出界地问题
import os
import sys# 请在此输入您的代码bx, by, mx, my = map(int, input().split())bx += 2
by += 2
mx += 2
my += 2dp = [[0] * (30) for i in range(30)]s = [[False] * 30 for i in range(30)]dp[2][1] = 1
s[mx][my] = Trues[mx - 1][my - 2] = True
s[mx - 1][my + 2] = True
s[mx - 2][my - 1] = True
s[mx - 2][my + 1] = True
s[mx + 1][my - 2] = True
s[mx + 1][my + 2] = True
s[mx + 2][my - 1] = True
s[mx + 2][my + 1] = Truefor i in range(2, bx + 1):for j in range(2, by + 1):if s[i][j]:dp[i][j] = 0else:dp[i][j] = dp[i - 1][j] + dp[i][j - 1]print(dp[bx][by])

完全背包

在这里插入图片描述

  • 完全背包问题就是在01 背包的基础上,每一件物品是没有个数的限制的,不过可以参照01 背包的思路,因为当第i 种物品的第一件物品就是01 背包问题,后面就是要考虑第 i 件物品
    状态方程
    1.dp[i][j] 表示前 i 种物品,在空间为 j 下能够装下的最大的价值
    2.那么当 pw[i] 第 i 件物品占用的体积大于 j 的时候,那么就只能
    dp[i][j] = dp[i-1][j]
    3.当pw[i] 第 i 件物品占用的体积小于等于 j 的时候,那么就是考虑第i 种物品选不选的问题了,也就是
    dp[i][j] = max(dp[i-1][j] ,dp[i][j-pw[i]]+pv[i])
    其中,dp[i-1][j] 是考虑不选第i 种物品,dp[i][j-pw[i]]+pv[i](01背包的本质区别)是在选了第i 种物品的基础上,再选几件的问题
import os
import sys# 请在此输入您的代码N,V = map(int ,input().split())
pw=[0]
pv=[0]
dp = [[0]*(V+1) for i in range(N+1)]for i in range(N):a,b = map(int,input().split())pw.append(a)pv.append(b)for i in range(1,N+1):for j in range(1,V+1):if j<pw[i]:dp[i][j] = dp[i-1][j]else:dp[i][j] = max(dp[i-1][j],dp[i][j-pw[i]]+pv[i])print(dp[N][V])

最长公共字符串

在这里插入图片描述

  • 对于这个问题,我们就要考虑从二维方面出发:
    dp[i][j] 表示前i 个 x 的字符 和前 j 个 y 的字符的最长的公共子序列的长度
    1.当x[i]==y[j] 的时候,那么就直接是dp[i][j] = dp[i-1][j-1] +1
    2.不相等的时候,就是dp[i][j] = max(dp[i-1][j],dp[i][j-1])

对于统计数目的话,还在研究:

import os
import sys# 请在此输入您的代码x = input()
y = input()# dp[i][j] 表示 x=xi 与 y=yj 时x与y 的最大的公共子序列的长度
lenx = len(x)
leny = len(y)dp = [[0]*(len(y)) for i in range(len(x))]for i in range(lenx):if x[i]==y[0]:dp[i][0]=1
for i in range(leny):if x[0]==y[i]:dp[0][i]=1for i in range(1,lenx):for j in range(1,leny):if x[i]==y[j]:dp[i][j]=dp[i-1][j-1]+1else:dp[i][j]=max(dp[i-1][j],dp[i][j-1])length =dp[lenx-1][leny-1]
sum=0
for i in range(lenx):for j in range(leny):if dp[i][j]==length:sum = sum +1sum = sum%100000000
print(length)
print(sum)

最长递增子序列

在这里插入图片描述
在这里插入图片描述

http://www.dtcms.com/wzjs/393244.html

相关文章:

  • 外国字体网站长沙建设网站制作
  • 洛阳平台公司seo人人网
  • 如何开发网站建设业务软文营销的五个步骤
  • 注册公司代理有哪些优化关键词排名的工具
  • 实验室网站建设的意义上海网络营销seo
  • 做外汇看哪些网站做网络推广的团队
  • 番禺高端网站制作免费注册
  • 办公空间设计经典案例seo学徒
  • wordpress主题修改头部seo博客优化
  • 网站meta 优化建议百度教育会员
  • 温州网站的优化百度站长seo
  • 毕设网站代做一般预算多少钱网站seo推广哪家值得信赖
  • wordpress 淘宝西安网站seo技术厂家
  • dedecms 调用 两个网站收录网
  • 庆阳市住房和城乡建设局网站精准网站seo诊断报告
  • 嘉兴做营销型网站设计全网关键词云怎么查
  • 重庆网站建设帝维科技谷歌seo新规则
  • 企业做网站的方案免费推广的途径与原因
  • 自助网站建设系统网站排名优化+o+m
  • 电脑手机自适应网站的建设网络整合营销4i原则
  • 怎么在网站上做视频不受国内限制的浏览器下载
  • 备案系统网站南宁seo排名收费
  • 怎样把网站做的更好白城seo
  • 外贸网站建站用什么意思淘宝指数
  • wordpress 页面压缩班级优化大师电脑版
  • 网上做问卷报酬不错的网站是怎么做网络营销
  • 网站优化建设销售网站有哪些
  • 开店做网站有什么好处山东seo多少钱
  • 西宁网站开发aso应用商店优化原因
  • 推广网站企业外贸全网营销推广