当前位置: 首页 > wzjs >正文

手册制作重庆seo推广外包

手册制作,重庆seo推广外包,佛山微商网站建设,织梦网站移动化目录 4 参数高效微调4.1 参数高效微调简介4.1.1 下游任务适配1)上下文学习(In-context learning)2)指令微调(Instruction Tuning) 4.1.2 参数高效微调4.1.3 参数高效微调的优势 4 参数高效微调 大语言模型…

目录

  • 4 参数高效微调
    • 4.1 参数高效微调简介
      • 4.1.1 下游任务适配
        • 1)上下文学习(In-context learning)
        • 2)指令微调(Instruction Tuning)
      • 4.1.2 参数高效微调
      • 4.1.3 参数高效微调的优势


4 参数高效微调

大语言模型虽知识丰富,但在垂直领域适配性不足,仅靠提示工程难以解决,需通过微调参数来提升适配性。然而,大语言模型参数量巨大,微调成本高,限制了其在垂直领域的应用。因此,实现效果可靠、成本可控的参数高效微调技术成为关键。

下面探讨主流的参数高效微调技术:参数附加方法、参数选择方法低秩适配方法的代表性算法实现与优势。

.

4.1 参数高效微调简介

大语言模型在垂直领域适配时,上下文学习和指令微调虽是有效途径但存在不足。为此,参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)技术出现。

本节先回顾前两者并分析其局限,再介绍PEFT概念及优势,最后分类讲解主流PEFT方法,包括参数附加、选择和低秩适配,阐述其原理和代表性工作。

.

4.1.1 下游任务适配

为提高大语言模型在垂直和细分领域的性能,需进行下游任务适配,主流方法有:

  • 上下文学习In-context learning

  • 指令微调Instruction Tuning

1)上下文学习(In-context learning)

上下文学习通过设计Prompt,将任务转化为生成任务,驱动模型完成任务。

小样本上下文学习Few-shotin-contextlearning):

  • 将样本-标签对转化为自然语言指令(Instruction)和样例(Demonstrations),

  • 拼接测试样本输入模型,输出作为预测结果。

  • 该方法无需更新模型参数,可快速应用于多种任务。

上下文学习虽能有效利用大语言模型的能力,但存在明显缺点:

  • 性能与微调有差距,Prompt设计耗费人力且不同设计导致性能差异大,

  • 推理代价随Prompt样例增多而快速上升。

因此,微调大语言模型在许多场景和垂直领域仍有必要。

2)指令微调(Instruction Tuning)

指令微调(Instruction Tuning)通过构建指令数据集并在其上进行监督微调,使模型更好地理解和执行自然语言处理任务指令。其过程如下:

  • 指令数据构建:指令数据包含指令、示例(可选)、问题和回答,构造方式有:1)数据集成,即将带标签的自然语言数据集通过模板转换为指令格式的<输入,输出>对,如Flan和P3数据集;2)大语言模型生成,即人工收集少量指令数据后,使用大语言模型进行指令扩展,如InstructWild和Self-Instruct数据集。

  • 监督微调:构建数据集后,采用完全监督的方式对预训练模型进行微调,通过顺序预测输出中的每个token来训练模型,从而显著提升模型的指令遵循能力,增强其推理水平和泛化到新任务、新领域的能力。

指令微调虽能提升大语言模型在下游任务的性能,但监督微调需大量计算资源。如LLaMA2-7B全量微调需近60GB内存,消费级GPU(如RTX4090)无法胜任。因此,在资源受限环境下,研究参数高效微调技术至关重要。

.

4.1.2 参数高效微调

参数高效微调(Parameter-Efficient Fine-Tuning,PEFT)旨在避免微调全部参数,减少在微调过程中需要更新的参数数量和计算开销,从而提高微调大语言模型的效率。

图4.2: 高效参数微调方法分类学。
在这里插入图片描述

以下是三种参数高效微调方法的精简总结:

  1. 参数附加方法(Additional Parameters Methods):在模型结构中附加较小的可训练模块(如适配器层),冻结原始参数,仅微调新模块,典型方法有适配器微调(Adapter-tuning)、提示微调(Prompt-tuning)、前缀微调(Prefix-tuning)和代理微调(Proxy-tuning)等。

  2. 参数选择方法(Parameter Selection Methods):仅选择模型部分参数微调,冻结其余参数,利用部分参数对下游任务的决定性作用,典型方法包括BitFit、Child-tuning和FishMask等。

  3. 低秩适配方法(Low-rank Adaptation Methods):通过低秩矩阵近似原始权重更新矩阵,冻结原始参数,仅微调低秩更新矩阵,大幅节省内存开销,经典方法有LoRA及其变体如AdaLoRA、DyLoRA和DoRA等。

三种参数高效微调(PEFT)方法:

  • 参数附加方法(Additional Parameters Methods):在模型结构中附加较小的可训练模块(如适配器层),冻结原始参数,仅微调新模块,典型方法有适配器微调(Adapter-tuning)、提示微调(Prompt-tuning)、前缀微调(Prefix-tuning)和代理微调(Proxy-tuning)等。

  • 参数选择方法(Parameter Selection Methods):仅选择模型部分参数微调,冻结其余参数,利用部分参数对下游任务的决定性作用,典型方法包括BitFit、Child-tuning和FishMask等。

  • 低秩适配方法(Low-rank Adaptation Methods):通过低秩矩阵近似原始权重更新矩阵,冻结原始参数,仅微调低秩更新矩阵,大幅节省内存开销,经典方法有LoRA及其变体如AdaLoRA、DyLoRA和DoRA等。

.

4.1.3 参数高效微调的优势

参数高效微调(PEFT)有以下优势:

  • 计算效率高:减少需更新参数数量,降低训练时计算资源消耗。

  • 存储效率高:减少微调参数数量,显著降低模型存储空间,适用于内存受限设备。

  • 适应性强:可快速适应不同任务,无需重新训练整个模型,提升模型在变化环境中的灵活性。

表4.1: 全量参数微调和参数高效微调显存占用对比(OOM代表超出内存限制)

模型名全量参数微调参数高效微调 (LoRA)
bigscience/T0_3B47.14GB GPU / 2.96GB CPU14.4GB GPU / 2.96GB CPU
bigscience/mt0-xxl (12B params)OOM GPU56GB GPU / 3GB CPU
bigscience/bloomz-7b1 (7B params)OOM GPU32GB GPU / 3.8GB CPU

.


其他参考:【大模型基础_毛玉仁】系列文章


声明:资源可能存在第三方来源,若有侵权请联系删除!

http://www.dtcms.com/wzjs/388263.html

相关文章:

  • cbi360建筑网优化推广排名网站教程
  • 简述网站推广的基本方法重庆百度推广
  • 镜美硅藻泥网站是那家公司做的兰州网站开发公司
  • 编程猫官网如何优化关键词排名快速首页
  • 国外房屋设计网站优化教程
  • 在线平台教育网站开发福州seo网站管理
  • 2345网站入口如何做网站平台
  • 卓光网站建设网络运营培训哪里有学校
  • 手机网站怎么做推广东莞优化排名公司
  • 网站的客服一般怎么做的什么软件能搜索关键词能快速找到
  • 桃城网站建设网址导航浏览器下载
  • 优化网站内链郑州seo教程
  • 美妆网站开发论文网络公司网站
  • 做led开关电源上什么网站好seo搜索引擎优化案例
  • 网站建设选青岛的公司好不好360推广登录入口
  • wordpress get_children网店产品seo如何优化
  • 福州网站推广公司信息流投放平台
  • 双井网站建设公司企业网络策划
  • 八步网站建设杭州网络推广外包
  • 手机网站开发建设方案b站黄页推广
  • 家乡特产网络营销方案网站优化排名方法
  • 做电子书的网站很有名后来被关闭了优化关键词排名工具
  • 代理网址大全seo搜索排名优化
  • 上海市建设咨询协会网站百度关键词规划师工具
  • java做后端的网站seo排名赚下载
  • 做期货看那个网站比较专业系统推广公司
  • dreamweaver怎么创建网站搜索引擎优化的各种方法
  • 做美食网站的意义seo专业学校
  • 做培训网站前端媒介星软文平台
  • 比较好的app创意想法黄山seo