当前位置: 首页 > wzjs >正文

网站建设费属于无形资产吗网站优化推广软件

网站建设费属于无形资产吗,网站优化推广软件,专升本报名入口官网2023报名时间,在沈阳做一个展示网站多少钱本文介绍了一种名为 **LLM-Pruner** 的方法,用于对大型语言模型(LLMs)进行结构化剪枝,以减少模型大小和计算需求,同时保留其多任务解决和语言生成能力。LLM-Pruner 通过依赖检测和重要性估计实现高效剪枝,并…

本文介绍了一种名为 **LLM-Pruner** 的方法,用于对大型语言模型(LLMs)进行结构化剪枝,以减少模型大小和计算需求,同时保留其多任务解决和语言生成能力。LLM-Pruner 通过依赖检测和重要性估计实现高效剪枝,并结合低秩近似(LoRA)快速恢复模型性能。以下是文章的核心公式及其解释:

---

### 1. **依赖关系的定义**
文章定义了模型中结构之间的依赖关系,用于确定哪些结构需要同时剪枝。依赖关系的定义如下:
- **公式 (1)**:  
  \[
  N_j \in \text{Out}(N_i) \land \text{Deg}^-(N_j) = 1 \Rightarrow N_j \text{ 依赖于 } N_i
  \]
  其中,\(N_i\) 和 \(N_j\) 是模型中的两个神经元,\(\text{Out}(N_i)\) 表示指向 \(N_i\) 的神经元集合,\(\text{Deg}^-(N_j)\) 表示 \(N_j\) 的入度。如果 \(N_j\) 的入度为1且唯一依赖于 \(N_i\),则 \(N_j\) 依赖于 \(N_i\)。

- **公式 (2)**:  
  \[
  N_i \in \text{In}(N_j) \land \text{Deg}^+(N_i) = 1 \Rightarrow N_i \text{ 依赖于 } N_j
  \]
  其中,\(\text{In}(N_j)\) 表示从 \(N_j\) 指向的神经元集合,\(\text{Deg}^+(N_i)\) 表示 \(N_i\) 的出度。如果 \(N_i\) 的出度为1且唯一指向 \(N_j\),则 \(N_i\) 依赖于 \(N_j\)。

**作用**:这些公式用于自动检测模型中耦合的结构,确保剪枝时不会破坏模型的依赖关系。

---

### 2. **重要性估计**
为了决定哪些结构可以被剪枝,文章提出了基于梯度和近似 Hessian 矩阵的重要性估计方法。

- **公式 (3)**:向量级重要性估计  
  \[
  I_{W_i} = |\Delta L(D)| = |L_{W_i}(D) - L_{W_i=0}(D)| = \left|\frac{\partial L(D)}{\partial W_i} W_i - \frac{1}{2} W_i^\top H W_i + O(\|W_i\|^3)\right|
  \]
  其中,\(L\) 是模型的损失函数,\(D\) 是用于估计重要性的数据集,\(H\) 是 Hessian 矩阵。公式中忽略了 Hessian 矩阵的高阶项,因为计算复杂度较高。

- **公式 (4)**:元素级重要性估计  
  \[
  I_{W_k^i} = |\Delta L(D)| = |L_{W_k^i}(D) - L_{W_k^i=0}(D)| = \left|\frac{\partial L(D)}{\partial W_k^i} W_k^i - \frac{1}{2} W_k^i H_{kk} W_k^i + O(\|W_k^i\|^3)\right|
  \]
  其中,\(k\) 表示权重矩阵 \(W_i\) 中的第 \(k\) 个元素,\(H_{kk}\) 是 Hessian 矩阵的对角线元素,可以用 Fisher 信息矩阵近似。

- **公式 (5)**:近似 Hessian 矩阵  
  \[
  I_{W_k^i} \approx |L_{W_k^i}(D) - L_{W_k^i=0}(D)| \approx \left|\frac{\partial L(D)}{\partial W_k^i} W_k^i - \frac{1}{2} \sum_{j=1}^N \left(\frac{\partial L(D_j)}{\partial W_k^i} W_k^i\right)^2 + O(\|W_k^i\|^3)\right|
  \]
  其中,\(N\) 是数据集 \(D\) 的样本数量。

**作用**:这些公式用于评估每个结构或参数对模型性能的影响,帮助选择剪枝的目标。

---

### 3. **组重要性聚合**
文章提出了多种聚合方法来评估整个结构组的重要性:
- **求和(Summation)**:  
  \[
  I_G = \sum_{i=1}^M I_{W_i} \quad \text{或} \quad I_G = \sum_{i=1}^M \sum_k I_{W_k^i}
  \]
- **求积(Product)**:  
  \[
  I_G = \prod_{i=1}^M I_{W_i} \quad \text{或} \quad I_G = \prod_{i=1}^M \prod_k I_{W_k^i}
  \]
- **取最大值(Max)**:  
  \[
  I_G = \max_{i=1}^M I_{W_i} \quad \text{或} \quad I_G = \max_{i=1}^M \max_k I_{W_k^i}
  \]
- **仅最后执行的结构(Last-Only)**:  
  \[
  I_G = I_{W_l} \quad \text{或} \quad I_G = \sum_k I_{W_k^l}
  \]
  其中,\(l\) 是组中最后执行的结构。

**作用**:这些聚合方法用于将单个结构或参数的重要性汇总为组的重要性,以便决定哪些组可以被剪枝。

---

### 4. **快速恢复阶段**
为了快速恢复剪枝后的模型性能,文章使用了低秩近似(LoRA)方法。具体公式如下:
- **公式 (6)**:LoRA 更新  
  \[
  \Delta W = PQ \quad \text{其中} \quad P \in \mathbb{R}^{d^- \times d}, \quad Q \in \mathbb{R}^{d \times d^+}
  \]
  \[
  f(x) = (W + \Delta W)X + b = (WX + b) + (PQ)X
  \]
  其中,\(W\) 是模型的权重矩阵,\(\Delta W\) 是更新值,\(P\) 和 \(Q\) 是低秩矩阵,\(d\) 是低秩维度。

**作用**:LoRA 通过分解权重矩阵的更新值为两个低秩矩阵的乘积,减少了优化参数的数量,从而加速模型的恢复过程。

---

### 5. **实验结果**
文章在多个大型语言模型(如 LLaMA、Vicuna 和 ChatGLM)上验证了 LLM-Pruner 的效果。实验结果表明:
- 在 20% 的剪枝率下,模型保留了 94.97% 的原始性能。
- 使用 LoRA 恢复后,模型的性能进一步提升,且仅需 3 小时的调优时间。
- 剪枝后的模型在零样本分类和生成任务中表现出色,且计算效率显著提高。

---

### 总结
LLM-Pruner 通过依赖关系检测和重要性估计实现了对大型语言模型的高效结构化剪枝,并结合 LoRA 快速恢复模型性能。这种方法在减少模型大小和计算需求的同时,保留了模型的多任务能力和语言生成能力。

http://www.dtcms.com/wzjs/384576.html

相关文章:

  • 太原做网站公司网址大全2345
  • 如何不花钱建设网站做seo网页价格
  • 做网站精英怎么优化关键词
  • 常州低价网站建设公司关键词挖掘机爱站网
  • 学网站开发多少钱产品软文代写
  • 秦皇岛网站建设哪里有杭州seo网络推广
  • wordpress标签是干什么的厦门谷歌seo
  • 淘宝上的网站怎么做成都关键词快速排名
  • 英语工作室网站怎么做百度推广北京总部电话
  • 网站建设方案云盘郑州网络营销排名
  • dw做的网站不显示上海百度推广开户
  • 国外做giveaway的网站一份完整的营销策划书
  • 顺德公司做网站在线代理浏览网站
  • 网站建设超市镇江推广公司
  • 哪家做的濮阳网站建设百度竞价开户渠道
  • 济南网站建设公司 推荐行知科技百度有哪些app产品
  • 南安住房与城乡建设部网站做百度推广一个月多少钱
  • 做英文网站多少钱seo官网优化详细方法
  • 网站开发组播地址的作用wordpress企业网站模板
  • 在线设计平台源码商丘seo
  • 网页设计的标准尺寸东营seo网站推广
  • 海外推广代理商seo外贸推广
  • 企业网站建设 论文百度账号登录官网
  • wordpress 添加搜索佛山优化推广
  • 免费做网站的公司小程序源码网
  • 珠海品牌型网站建设下百度安装
  • 合肥中小型企业网站建设方案模板附近电脑培训学校
  • 建设市场监督管理网站如何做品牌推广方案
  • centos 下载wordpressseo网络营销外包公司
  • 网络服务器无响应seo基础入门教程