当前位置: 首页 > wzjs >正文

房地产网站制作正规seo关键词排名哪家专业

房地产网站制作,正规seo关键词排名哪家专业,哪里做网站一套一百,网站建设的工作流程博主介绍:✌程序员徐师兄,7年大厂开发经验。全网粉丝12w,CSDN博客专家,同时活跃在掘金、华为云、阿里云、InfoQ等平台,专注Java技术和毕业项目实战分享✌ 🍅文末获取源码联系🍅 👇&a…

博主介绍:✌程序员徐师兄,7年大厂开发经验。全网粉丝12w+,CSDN博客专家,同时活跃在掘金、华为云、阿里云、InfoQ等平台,专注Java技术和毕业项目实战分享✌
🍅文末获取源码联系🍅
👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟

  • 2022‑2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅
  • Java项目精品实战案例《500套》
  • Java微信小程序项目实战《200套》
  • Python项目实战《200套》
    感兴趣的先收藏!毕设选题、项目、文档写作有疑问随时留言~

文章目录

    • 简介
    • 技术栈
    • 系统模块
    • 核心代码示例
      • 爬虫示例(Requests + BeautifulSoup)
      • 数据清洗与聚合(Pandas)
      • 后端接口(Django View)
      • 前端 ECharts 展示
    • 效果展示
      • 登录与数据管理
      • 首页概览
      • 动态可视化
      • 后台管理
    • 源码获取:

简介

这套系统是用 Python + Django 搭的,目标是帮咱们把广州、杭州和北京的二手房价格扒下来,然后通过酷炫的图表一键展示动态走势。后台用 Django 提供接口,前端用 HTML 搭页面,图表部分用 ECharts,数据暂时放 SQLite,结构轻巧又好上手。整个项目实战性强,新手大学生拿来做毕业设计、课程设计都很合适。

房价可视化

系统能自动爬取各大房产网站二手房最新报价,结合 Pandas 做数据清洗、聚合,再把结果喂给前端。用户一打开页面,就能看到不同城市按时间、区域、房型分类的均价折线图、柱状图,直观了解市场波动。


技术栈

技术用途说明
Django后端框架处理业务逻辑、提供 RESTful 接口
Django 文档
快速入门
SQLite数据存储轻量级嵌入式数据库,免安装
Pandas数据处理清洗、统计、聚合
Pandas 教程
PyMySQLMySQL 连接(可选)若要用 MySQL,请安装并替换 SQLite
Requests网络请求发起爬虫 HTTP 请求
BeautifulSoup4网页解析从 HTML 中抽取房源信息
ECharts前端可视化折线图、柱状图、区域热力图
ECharts 入门
HTML/CSS/JS前端页面展示图表和交互

系统模块

整个可视化系统一共分三个核心模块:

  1. 数据采集

    • 使用 Requests + BeautifulSoup4 自动爬取指定网站的二手房列表页和详情页。
    • 加入随机 UA、延时(time.sleep(random.uniform(1,3)))和异常重试,防止被反爬。
  2. 数据处理

    • 用 Pandas 将原始爬取的字段(小区名、区域、价格、面积、发布时间等)做清洗和标准化。
    • 对空值字段赋 NaN,统一时间格式,拆分房型、楼层等;
    • 按城市+日期+区域聚合,计算每日均价、涨跌幅。
  3. 图表展示

    • 后端 Django 提供 JSON 接口 /api/price-trend?city=北京&start=2024-01-01&end=2024-05-01,返回均价时序。
    • 前端用 ECharts 画折线图、柱状图、热力图,一页多图自由切换;
    • 支持按房型筛选、按区县对比。

核心代码示例

爬虫示例(Requests + BeautifulSoup)

import random, time, requests
from bs4 import BeautifulSoupdef fetch_page(url):headers = {'User-Agent': get_random_ua()}resp = requests.get(url, headers=headers, timeout=10)resp.raise_for_status()return resp.textdef parse_list(html):soup = BeautifulSoup(html, 'html.parser')for item in soup.select('.list-item'):yield {'title': item.select_one('.title').get_text(strip=True),'price': item.select_one('.price').get_text(strip=True),'area': item.select_one('.area').get_text(strip=True),'detail_url': item.select_one('a')['href']}# 定时拉取
for city in ['gz', 'hz', 'bj']:for page in range(1, 6):url = f'https://{city}.ershoufang.example.com/page/{page}/'html = fetch_page(url)for record in parse_list(html):save_to_db(city, record)time.sleep(random.uniform(1, 3))

数据清洗与聚合(Pandas)

import pandas as pd
from sqlalchemy import create_engine# 连接 SQLite
engine = create_engine('sqlite:///house.db')df = pd.read_sql('select * from listings', engine)
# 清洗
df['price'] = df['price'].str.replace('万', '').astype(float)
df['date'] = pd.to_datetime(df['date'])
df['district'] = df['title'].apply(lambda s: s.split()[1])# 聚合计算每日均价
trend = df.groupby(['city', df['date'].dt.date]).price.mean().reset_index()
trend.to_sql('price_trend', engine, if_exists='replace', index=False)

后端接口(Django View)

from django.http import JsonResponse
from .models import PriceTrenddef price_trend(request):city = request.GET.get('city')start = request.GET.get('start')end = request.GET.get('end')qs = PriceTrend.objects.filter(city=city, date__range=[start, end]).order_by('date')data = list(qs.values('date', 'price'))return JsonResponse({'status': 'ok', 'data': data})

前端 ECharts 展示

<div id="chart" style="width: 100%; height: 400px;"></div>
<script>
fetch(`/api/price-trend?city=北京&start=2024-01-01&end=2024-05-01`).then(res => res.json()).then(({ data }) => {const dates = data.map(d => d.date);const prices = data.map(d => d.price);var myChart = echarts.init(document.getElementById('chart'));myChart.setOption({title: { text: '北京二手房均价走势' },xAxis: { type: 'category', data: dates },yAxis: { type: 'value' },series: [{ data: prices, type: 'line', smooth: true }]});});
</script>

效果展示

登录与数据管理

登录注册

首页概览

系统首页

动态可视化

房价折线

后台管理

后台管理


源码获取:

大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻

👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟

2022-2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅

Java项目精品实战案例《100套》

Java微信小程序项目实战《100套》

Python项目实战《100套》

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及文档编写等相关问题都可以给我留言咨询,希望帮助更多的人

http://www.dtcms.com/wzjs/380710.html

相关文章:

  • 高中男女做羞羞视频网站微信seo是什么意思
  • 如何偷别人dedecms网站的模板营销型制作网站公司
  • 聊城推广网站网站优化有哪些类型
  • 网站开发毕业设计中期汇报表厦门seo培训
  • ui界面设计素材搜索引擎排名优化价格
  • 在上海卖商铺做哪个网站好谷歌推广外贸建站
  • python做网站性能怎么样郑州网站营销推广公司
  • 感觉做的比较好的健身网站广州现在有什么病毒感染
  • 你注册过的那些网站河南网站推广多少钱
  • 什么是一学一做视频网站好网络营销未来有哪些发展趋势
  • 网站云服务器租用今日头条新闻头条
  • 找人代做网站费用b2b电子商务网站
  • 免费获取资源的公众号seo属于什么职位类型
  • 做软件销售网站济南seo优化外包服务
  • 网站建设市场调查报告百度客服电话24小时人工服务热线
  • vps amh wordpress搜索引擎网站优化推广
  • 网站简单代码企业品牌推广方案
  • 手机网站seo怎么做做优化的网站
  • 有没有咨询求助做任务的网站在线之家
  • 重庆网站建设公司魁网做一个微信小程序需要多少钱
  • 临邑县住房和城乡建设局网站seo平台是什么意思
  • 阿里云建设网站流程搭建网站平台
  • 小公司建网站 优帮云南宁seo渠道哪家好
  • asp.net 网站安全 检测站长素材网站
  • c 网站开发需要学什么软件有哪些如何建立免费个人网站
  • 南京网站设计案例俄罗斯引擎搜索
  • 做铝材哪些网站招聘网页宣传
  • 做网站广告经营者周口网站建设公司
  • 温州网站建设策划方案如何免费建立一个网站
  • 招商网站建设网络营销推广方法和手段