当前位置: 首页 > wzjs >正文

网站功能测试方法网站制作教程视频

网站功能测试方法,网站制作教程视频,wordpress 可视化编辑器,假发的出口做b2c网站在 Python 编程世界里,代码的简洁性与可读性至关重要。简洁优雅的代码不仅便于自己后期维护,也能让其他开发者快速理解逻辑。而 Python 丰富的内置函数和一些实用的第三方库函数,就是实现这一目标的有力武器。接下来,就为大家介绍…

在 Python 编程世界里,代码的简洁性与可读性至关重要。简洁优雅的代码不仅便于自己后期维护,也能让其他开发者快速理解逻辑。而 Python 丰富的内置函数和一些实用的第三方库函数,就是实现这一目标的有力武器。接下来,就为大家介绍几个能让代码“脱胎换骨”的函数,助力写出简洁又优雅的代码。

 

 

一、 map  函数:批量操作元素

 

 map  函数接收两个参数,一个是函数,一个是可迭代对象(比如列表、元组等 ),它会将传入的函数依次作用到可迭代对象的每个元素上,返回一个新的迭代器。

 

场景示例:列表元素平方

 

如果要对一个列表  nums = [1, 2, 3, 4]  中的每个元素求平方,常规的  for  循环写法是这样:

 

nums = [1, 2, 3, 4]

result = []

for num in nums:

    result.append(num ** 2)

print(result)  

 

 

用  map  函数则简洁很多:

 

nums = [1, 2, 3, 4]

result = map(lambda x: x ** 2, nums)

# 转为列表查看结果,实际使用中若后续迭代可直接用迭代器

print(list(result))  

 

 

这里利用  lambda  匿名函数配合  map ,一行代码就完成了对列表所有元素的平方操作,省去了手动初始化空列表、写循环体的步骤,代码更紧凑。

 

二、 filter  函数:精准筛选元素

 

 filter  函数同样接收函数和可迭代对象作为参数,传入的函数需返回布尔值,它会筛选出可迭代对象中使函数返回  True  的元素,返回一个迭代器。

 

场景示例:筛选列表中的偶数

 

对于列表  nums = [1, 2, 3, 4, 5, 6] ,要筛选出其中的偶数,常规循环:

 

nums = [1, 2, 3, 4, 5, 6]

result = []

for num in nums:

    if num % 2 == 0:

        result.append(num)

print(result)  

 

 

用  filter  函数:

 

nums = [1, 2, 3, 4, 5, 6]

result = filter(lambda x: x % 2 == 0, nums)

print(list(result))  

 

 

借助  filter  ,把筛选逻辑(判断是否为偶数 )提炼成函数(这里用  lambda  ),直接筛选出符合条件的元素,代码逻辑清晰又简洁。

 

三、 zip  函数:高效聚合多个可迭代对象

 

 zip  函数能将多个可迭代对象中对应位置的元素打包成元组,返回一个迭代器。当你需要同时遍历多个可迭代对象,取出对应位置元素进行操作时,它非常好用。

 

场景示例:合并两个列表对应元素

 

有两个列表  names = ["Alice", "Bob"] , ages = [20, 25] ,要将姓名和年龄一一对应合并,常规思路可能用索引遍历:

 

names = ["Alice", "Bob"]

ages = [20, 25]

result = []

for i in range(len(names)):

    result.append((names[i], ages[i]))

print(result)  

 

 

用  zip  函数:

 

names = ["Alice", "Bob"]

ages = [20, 25]

result = zip(names, ages)

print(list(result))  

 

 

 zip  自动帮我们把对应位置元素配对,代码简洁直观,尤其当可迭代对象数量更多时,优势更明显,比如三个列表  a = [1,2] ,  b = [3,4] ,  c = [5,6]  , zip(a,b,c)  能轻松打包成  [(1,3,5),(2,4,6)]  这样的形式。

 

四、 enumerate  函数:遍历带索引

 

在遍历可迭代对象时,有时需要同时获取元素的索引和元素本身。 enumerate  函数就可以在遍历过程中,为每个元素配上其索引,返回一个枚举对象(迭代器 )。

 

场景示例:遍历列表并获取索引

 

对于列表  fruits = ["apple", "banana", "orange"] ,要打印出“索引:元素”的形式,常规做法:

 

fruits = ["apple", "banana", "orange"]

index = 0

for fruit in fruits:

    print(f"{index}: {fruit}")

    index += 1

 

 

用  enumerate  函数:

 

fruits = ["apple", "banana", "orange"]

for index, fruit in enumerate(fruits):

    print(f"{index}: {fruit}")

 

 

 enumerate  自动处理了索引的递增,代码更简洁,也避免了手动管理索引变量可能出现的错误,让遍历带索引的场景变得轻松。

 

五、 collections.defaultdict :便捷处理字典默认值

 

在使用普通字典  dict  时,如果访问不存在的键,会抛出  KeyError  异常。而  collections  模块里的  defaultdict  ,可以指定一个默认工厂函数,当访问不存在的键时,会自动用默认工厂函数生成对应的值。

 

场景示例:统计列表中各元素出现次数(常规字典对比 )

 

常规字典统计列表  words = ["apple", "banana", "apple"]  中单词出现次数:

 

words = ["apple", "banana", "apple"]

count_dict = {}

for word in words:

    if word in count_dict:

        count_dict[word] += 1

    else:

        count_dict[word] = 1

print(count_dict)  

 

 

用  defaultdict :

 

from collections import defaultdict

words = ["apple", "banana", "apple"]

count_dict = defaultdict(int) # int 作为默认工厂函数,调用 int() 得到 0

for word in words:

    count_dict[word] += 1

print(dict(count_dict))  

 

 

 defaultdict  帮我们省去了判断键是否存在的步骤,直接对键进行操作即可,在处理一些需要默认值的字典场景时,让代码简洁又高效。

 

六、 functools.lru_cache :缓存优化递归或重复计算

 

对于一些递归函数或者会重复计算相同参数结果的函数, functools  模块里的  lru_cache  装饰器可以缓存函数的调用结果,当再次以相同参数调用函数时,直接返回缓存的结果,避免重复计算,提升效率,同时也能让代码更简洁(无需手动实现缓存逻辑 )。

 

场景示例:计算斐波那契数列(递归优化 )

 

常规递归计算斐波那契数列(存在大量重复计算 ):

 

def fibonacci(n):

    if n <= 1:

        return n

    return fibonacci(n - 1) + fibonacci(n - 2)

# 计算 fibonacci(30) 时会有很多重复计算

print(fibonacci(30))  

 

 

用  lru_cache  装饰器优化:

 

from functools import lru_cache

 

@lru_cache(maxsize=None) # maxsize=None 表示缓存无限大

def fibonacci(n):

    if n <= 1:

        return n

    return fibonacci(n - 1) + fibonacci(n - 2)

 

print(fibonacci(30))  

 

 

加上  lru_cache  后,函数自动缓存了计算结果,后续相同参数调用直接取缓存,大大提升了递归效率,代码上也只是添加一个装饰器,简洁又实用。

 

七、这些 Python 函数(包括内置函数和部分库函数 ),从数据处理的批量操作、筛选、聚合,到遍历优化、字典便捷处理,再到函数计算优化,覆盖了多种常见编程场景。合理运用它们,能让代码摆脱繁琐的循环、条件判断等冗余结构,变得更加简洁优雅,同时也能提升代码的执行效率和可读性。当然,Python 中还有很多其他好用的函数和特性,大家在日常编程中可以不断探索挖掘,让自己的代码越来越“Pythonic” ,写出更优质的程序。

 

http://www.dtcms.com/wzjs/36649.html

相关文章:

  • 简述网站开发的基本流程百度一键安装
  • php商城网站开发报告广告竞价推广
  • 建商城网站公司女教师遭网课入侵直播录屏曝光i
  • 手机wap网站html源码138ip查询网域名解析
  • access做网站数据库国外搜索引擎网址
  • 南京做企业网站的公司腾讯营销平台
  • 昆山网站建设义搏网站优化外包找谁
  • 有做任务赚钱的网站seo推广
  • 网站主机和服务器今日新闻国内大事件
  • 哈尔滨工程造价信息搜索引擎优化实训报告
  • 更换空间对网站的影响友情链接的作用有哪些
  • 做旅游视频网站合肥品牌seo
  • 电商网站商品中心设计方案网站优化员seo招聘
  • 北京seo网站管理如何快速推广自己的品牌
  • 网站开发公司气氛关键词检索怎么弄
  • 网站开发要多钱基本营销策略有哪些
  • 英文网站做百度权重有意义吗网络营销专业学校排名
  • 网站怎么做301跳转深圳google推广
  • 宁波外贸网站设计公司今日刚刚发生的新闻
  • wordpress自带下载插件汕头seo网站建设
  • 高端网站建设网页设计全球搜是什么公司
  • 个人网站备案号可以做企业网站吗湖南株洲疫情最新情况
  • 上海cms建站模板自动外链
  • 建设网站图windows优化大师要钱
  • 做导航网站用什么源码互联网营销师证
  • 做国外服务器网站推广效果最好的平台
  • 武汉外贸网站建设seo的理解
  • 响应式网站div居中代做seo关键词排名
  • 购物网站线下推广办法企业网站管理
  • 网站建设的相关技术方案友情链接购买网站