当前位置: 首页 > wzjs >正文

网站中的游戏是怎么做的腾讯推广一次广告多少钱

网站中的游戏是怎么做的,腾讯推广一次广告多少钱,山东济宁刚刚出大事,企业网站建设合作协议范文文章目录 引言一、概述二、代码解析1. 图像显示函数2. 核心认证函数3. 匹配点筛选4. 认证判断 三、主程序四、技术要点五、总结 引言 在计算机视觉领域,图像特征匹配是一个非常重要的技术,广泛应用于物体识别、图像拼接、运动跟踪等场景。今天将介绍一个…

文章目录

    • 引言
    • 一、概述
    • 二、代码解析
      • 1. 图像显示函数
      • 2. 核心认证函数
      • 3. 匹配点筛选
      • 4. 认证判断
    • 三、主程序
    • 四、技术要点
    • 五、总结

引言

在计算机视觉领域,图像特征匹配是一个非常重要的技术,广泛应用于物体识别、图像拼接、运动跟踪等场景。今天将介绍一个基于SIFT特征提取FLANN匹配器的指纹认证系统的实现方法。

一、概述

这个指纹认证系统主要通过比较源指纹图像和模板指纹图像的特征点匹配数量来判断是否认证通过。系统使用SIFT算法提取图像特征点,然后通过FLANN匹配器进行快速近似最近邻搜索,最后根据匹配点数量决定认证结果。

二、代码解析

1. 图像显示函数

def cv_show(name,img):cv2.imshow(name,img)cv2.waitKey(0)

这是一个简单的图像显示函数,接收窗口名称和图像作为参数,显示图像直到用户按下任意键。

2. 核心认证函数

def verfication(src,model):# 创建SIFT特征提取器sift = cv2.SIFT_create()# 检测关键点和计算描述符(特征向量)源图像kp1,des1 = sift.detectAndCompute(src,None)  #第二个参数:掩膜# 检测关键点和计算描述符 模板图像kp2,des2 = sift.detectAndCompute(model,None)# 创建FLANN匹配器flann = cv2.FlannBasedMatcher()# 使用 K 近邻匹配matches = flann.knnMatch(des1,des2,k=2)

这段代码是图像特征匹配的核心部分,主要用于提取图像特征并进行初步匹配。下面我将详细解释每一部分的功能和原理:

  1. 创建SIFT特征提取器
sift = cv2.SIFT_create()
  • SIFT (Scale-Invariant Feature Transform) 是一种尺度不变特征变换算法
  • cv2.SIFT_create() 创建了一个SIFT特征检测器和描述符生成器
  • SIFT能够检测图像中的关键点并计算这些关键点的特征描述符
  1. 检测关键点和计算描述符(源图像)
kp1, des1 = sift.detectAndCompute(src, None)
  • detectAndCompute() 方法同时执行两个操作:
    • 检测图像中的关键点(keypoints)
    • 计算这些关键点的描述符(descriptors)
  • 参数说明:
    • src: 输入的源图像(待认证的指纹图像)
    • None: 可选的掩膜参数,这里不使用
  • 返回值:
    • kp1: 检测到的关键点列表,每个关键点包含位置、尺度、方向等信息
    • des1: 关键点的描述符矩阵,每个描述符是一个128维的向量
  1. 检测关键点和计算描述符(模板图像)
kp2, des2 = sift.detectAndCompute(model, None)
  • 同样的操作应用于模板图像(model)
  • 得到模板图像的关键点kp2和描述符des2

4. 创建FLANN匹配器

flann = cv2.FlannBasedMatcher()
  • FLANN (Fast Library for Approximate Nearest Neighbors) 是一个快速近似最近邻搜索库
  • 相比暴力匹配(Brute-Force),FLANN在大规模数据集中匹配效率更高
  • cv2.FlannBasedMatcher() 创建了一个FLANN匹配器对象
  1. 使用K近邻匹配
matches = flann.knnMatch(des1, des2, k=2)
  • knnMatch() 执行K近邻匹配:
    • 对于des1中的每个描述符,在des2中寻找最相似的k个描述符
    • 这里设置k=2,即寻找每个源特征点在模板图像中的2个最近邻匹配
  • 返回的matches是一个列表,其中每个元素包含:
    • 两个最佳匹配对象(DMatch)
    • 每个DMatch对象包含:
      • distance: 两个描述符之间的距离(相似度)
      • queryIdx: 源图像描述符的索引
      • trainIdx: 模板图像描述符的索引

整体流程理解

  1. 特征提取:从两幅图像中提取稳定的、具有区分性的局部特征
  2. 特征匹配:在特征空间中寻找相似的特征点对
  3. 后续处理:通过比率测试筛选优质匹配(代码中接下来的部分)

3. 匹配点筛选

    ok = []for m,n in matches:# 根据lowe's比率测试,选择最佳匹配if m.distance < 0.8 * n.distance:ok.append(m)

这里使用了Lowe’s比率测试来筛选优质的匹配点,只有当第一个匹配的距离小于第二个匹配距离的0.8倍时,才认为是一个好的匹配。

4. 认证判断

    # 统计通过筛选的匹配数量num = len(ok)if num >= 500:result = "认证通过"else:result = "认证失败"return result

如果优质匹配点数量超过500个,则认为认证通过,否则认证失败。

三、主程序

if __name__ == "__main__":src1 = cv2.imread("zhiwen_1.bmp")cv_show('zhiwen_1',src1)src2 = cv2.imread("zhiwen_2.bmp")cv_show('zhiwen_2',src2)model = cv2.imread("model.bmp")cv_show('model',model)result1 = verfication(src1,model)result2 = verfication(src2,model)print("src1验证结果为:",result1)print("src2验证结果为:",result2)

主程序读取两个源指纹图像和一个模板图像,分别进行认证并输出结果。
代码运行结果如下:
在这里插入图片描述

四、技术要点

  1. SIFT特征:尺度不变特征变换,具有良好的尺度、旋转不变性,对光照变化也有一定鲁棒性。

  2. FLANN匹配器:快速近似最近邻搜索库,在大规模数据集中比暴力匹配更高效。

  3. Lowe’s比率测试:由David Lowe提出,用于消除不稳定的匹配点,提高匹配质量。

五、总结

本文介绍了一个基于SIFT和FLANN的简单指纹认证系统实现。通过特征点匹配数量来判断认证结果,虽然简单但体现了计算机视觉在生物识别中的应用。读者可以根据实际需求进一步优化和完善这个系统。

希望这篇博客对你有所帮助!如果有任何问题,欢迎在评论区留言讨论。

http://www.dtcms.com/wzjs/351631.html

相关文章:

  • 蒙古文网站建设汇报seo技术培训课程
  • 行业网站需要如何做搜索引擎优化的基本手段
  • 党委门户网站建设方案steam交易链接在哪里
  • 南京网站建设多少钱搜索引擎优化是什么工作
  • 百度图片搜索入口seo经理
  • 在线crm管理系统河南网站推广优化排名
  • 怎么做自己的优惠价网站百度seo培训要多少钱
  • 如何在电脑上做网站合肥网站优化推广方案
  • 万网网站加速seo关键词优化推广
  • 漳州网站建设哪家最权威中国突然宣布一重磅消息
  • 信息发布b2b电子商务平台seo指的是什么意思
  • 宜宾市做网站多少钱口碑营销ppt
  • 建网站挣钱 优帮云网络营销的基本特征
  • 机械加工分类搜索引擎优化分析报告
  • 上海内贸网站建设最新的销售平台
  • 网站可以做多少优化关键词福鼎网站优化公司
  • 做流量任务的试用网站软文新闻发布平台
  • 小型手机网站建设哪家好百度引擎搜索推广
  • 查看网站有没有做301seo一个月工资一般多少
  • sf999传奇网站官网seo排名优化seo
  • 做soho外贸网站天津建站网
  • 品牌厂家网站建设网站软件下载大全
  • 做网站需要的图片口碑营销的案例及分析
  • 如何评判网站建设岗位百度投诉中心24人工客服电话
  • 国外b2b网站是什么意思什么是网站
  • 怎么样模仿网站seo搜索排名优化方法
  • 汕头自助建站系统seo方式包括
  • 手机设计培训网站建设江阴网站制作公司
  • 做包装的网站谷歌sem推广
  • 免费空间最大的云盘seo谷歌外贸推广