当前位置: 首页 > wzjs >正文

做外贸门户网站seo网站优化推广费用

做外贸门户网站,seo网站优化推广费用,辽宁网站推广的目的,广西网站建设机器学习(Machine Learning) 简要声明 基于吴恩达教授(Andrew Ng)课程视频 BiliBili课程资源 文章目录 机器学习(Machine Learning)简要声明 一、逻辑回归的基本原理分类判断条件模型输出的解释Sigmoid 函数与 Logistic 函数逻辑…

机器学习(Machine Learning)

简要声明

基于吴恩达教授(Andrew Ng)课程视频
BiliBili课程资源


文章目录

  • 机器学习(Machine Learning)
    • 简要声明
  • 一、逻辑回归的基本原理
    • 分类判断条件
    • 模型输出的解释
    • Sigmoid 函数与 Logistic 函数
    • 逻辑回归模型的输出范围
    • 实际应用示例


一、逻辑回归的基本原理

逻辑回归是一种常用的分类算法,它可以将线性回归的输出映射到概率空间,从而实现二分类或多分类任务。其核心思想是通过一个线性函数来拟合数据,然后使用激活函数将其输出限制在 [0, 1] 区间内,表示为概率值。

逻辑回归模型的数学表达式为:

f w , b ( x ) = σ ( w x + b ) f_{w,b}(x) = \sigma(w x + b) fw,b(x)=σ(wx+b)

其中, f w , b ( x ) f_{w,b}(x) fw,b(x) 是模型的输出, w w w b b b 分别是权重和偏置项, σ \sigma σ 是激活函数,通常使用 Sigmoid 函数,其定义为:

σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1 + e^{-z}} σ(z)=1+ez1

通过 Sigmoid 函数,我们可以将线性回归的输出 z = w x + b z = wx + b z=wx+b 转换为概率值。当 z z z 很大时, σ ( z ) \sigma(z) σ(z) 接近于 1;当 z z z 很小时, σ ( z ) \sigma(z) σ(z) 接近于 0。

在这里插入图片描述

  • 在单变量图中,阳性结果同时显示为红色的 ‘X’ 和 y=1。阴性结果为蓝色 ‘O’,位于 y=0 处。
    在线性回归的情况下,y 不限于两个值,而是可以是任何值。
  • 在双变量图中,y 轴不可用。正面结果显示为红色“X”,而负面结果则使用蓝色“O”符号。
    在具有多个变量的线性回归的情况下,y 不会局限于两个值,而类似的图应该是三维的。

分类判断条件

在分类任务中,根据模型的输出来判断样本的类别。逻辑回归模型的分类判断条件如下:

条件分类结果
f w , b ( x ) ≥ 0.5 f_{w,b}(x) \geq 0.5 fw,b(x)0.5 y ^ = 1 \hat{y} = 1 y^=1
f w , b ( x ) < 0.5 f_{w,b}(x) < 0.5 fw,b(x)<0.5 y ^ = 0 \hat{y} = 0 y^=0

决策边界的选择会影响模型的分类结果,可能需要根据具体问题调整。

模型输出的解释

逻辑回归模型的输出可以解释为样本属于正类(1)的概率。数学表达式为:

f w → , b ( x → ) = P ( y = 1 ∣ x → ; w → , b ) f_{\overrightarrow{w}, b}(\overrightarrow{x}) = P(y = 1 | \overrightarrow{x}; \overrightarrow{w}, b) fw ,b(x )=P(y=1∣x ;w ,b)

这意味着,给定输入特征 x → \overrightarrow{x} x 和模型参数 w → , b \overrightarrow{w}, b w ,b,模型输出的是样本 y y y 属于正类(1)的概率。例如,如果 f w → , b ( x → ) = 0.7 f_{\overrightarrow{w}, b}(\overrightarrow{x}) = 0.7 fw ,b(x )=0.7,表示模型预测该样本有 70% 的概率属于正类(1)。

由于概率的性质,我们有:

P ( y = 0 ) + P ( y = 1 ) = 1 P(y = 0) + P(y = 1) = 1 P(y=0)+P(y=1)=1

Sigmoid 函数与 Logistic 函数

为了将线性回归的输出限制在 [0, 1] 区间内,逻辑回归使用了 Sigmoid 函数(也称为 Logistic 函数)。其数学定义为:

g ( z ) = 1 1 + e − z g(z) = \frac{1}{1 + e^{-z}} g(z)=1+ez1

其中, z z z 是线性回归的输出,即:

z = w → ⋅ x → + b z = \overrightarrow{w} \cdot \overrightarrow{x} + b z=w x +b

通过 Sigmoid 函数,线性回归的输出被转换为概率值。Sigmoid 函数的曲线显示,当 z z z 很大时, g ( z ) g(z) g(z) 接近于 1;当 z z z 很小时, g ( z ) g(z) g(z) 接近于 0。
在这里插入图片描述

逻辑回归模型的输出范围

逻辑回归模型的输出范围在 0 和 1 之间,得益于 Sigmoid 函数的特性:

0 < g ( z ) < 1 0 < g(z) < 1 0<g(z)<1

因此,逻辑回归模型的输出可以解释为概率值,表示样本属于正类(1)的可能性。

# Generate an array of evenly spaced values between -10 and 10
z_tmp = np.arange(-10,11)y = sigmoid(z_tmp)np.set_printoptions(precision=3) 
print("Input (z), Output (sigmoid(z))")
print(np.c_[z_tmp, y])

输出结果为

在这里插入图片描述

实际应用示例

在这里插入图片描述

在这里插入图片描述
可以看见线性函数受数据影响很大
在这里插入图片描述
在这里插入图片描述
逻辑函数很好地拟合了数据

以肿瘤大小(直径,单位为厘米)为输入特征 x x x,肿瘤是否为恶性(1 表示恶性,0 表示良性)为输出 y y y。逻辑回归模型可以预测给定肿瘤大小的情况下,肿瘤为恶性的概率。

例如,假设模型预测当肿瘤大小为某个值时, f w → , b ( x → ) = 0.7 f_{\overrightarrow{w}, b}(\overrightarrow{x}) = 0.7 fw ,b(x )=0.7,意味着模型认为该肿瘤有 70% 的概率为恶性。


continue…

http://www.dtcms.com/wzjs/331097.html

相关文章:

  • 做淘客app要网站吗做网页的网站
  • 黄页网站推广方案网络营销策划模板
  • 网站的建设与维护工资搜狗关键词排名查询
  • 网站建设中 下载百度一下官网首页下载
  • 毕设做网站工作量够吗色盲和色弱的区别
  • 怀化职院网站北京网上推广
  • 怎么建设商品网站wordpress自助建站
  • 模板做网站多少钱seo培训中心
  • 二级域名分发站免费长沙正规竞价优化推荐
  • 医院网站建设台账百度一下你就知道主页
  • 办公系统管理软件企业网站优化公司
  • 做英文兼职的网站有哪些市场营销试题库(带答案)
  • 湘西网站建设网络营销公司全网推广公司
  • 企业网站模板下载需谨慎半数留有后门谷歌seo优化中文章
  • 大厂做网站免费代理浏览网页
  • ipv6改造 网站怎么做sem网络推广是什么
  • 中山免费网站建设免费seo关键词优化服务
  • 建站之星怎么收费一般网络推广应该怎么做
  • 网站建站日期怎么看线上线下整合营销方案
  • wordpress发布失败企业网站优化排名
  • 九一人才网招聘网官方网站最新的新闻 今天
  • 如何wix 做 网站aso优化渠道
  • 福田做商城网站建设哪家服务周到免费seo关键词优化方案
  • 长春网站建设电话咨询网站内部seo优化包括
  • 德州做网站电商培训心得
  • 域名出售后被用来做非法网站杭州优化建筑设计
  • 潮品服饰网站建设规划书sem竞价推广
  • 深圳营销型网站建设公司网络服务电子商务营销策略有哪些
  • asp.net网站开发技术关键词排名霸屏代做
  • 做一款app需要网站吗ui设计公司