当前位置: 首页 > wzjs >正文

网站域名做链接怎么做360优化大师旧版本

网站域名做链接怎么做,360优化大师旧版本,佛山城市建设投资有限公司,有些网站做不了seoMRI 脊椎分割数据集/脊椎分割项目解决 包含脊椎分割数据集: 原图,标签分别2460张 代码仅供参考 MRI 脊椎分割数据集/脊椎分割项目解决 包含脊椎分割数据集: 原图,标签分别2460张 完整的基于YOLOv5的MRI脊椎分割项目的实现。我们将涵盖以下内容&#x…

MRI 脊椎分割数据集/脊椎分割项目解决
包含脊椎分割数据集:
原图,标签分别2460张

代码仅供参考
在这里插入图片描述
MRI 脊椎分割数据集/脊椎分割项目解决
包含脊椎分割数据集:
原图,标签分别2460张在这里插入图片描述
在这里插入图片描述
完整的基于YOLOv5的MRI脊椎分割项目的实现。我们将涵盖以下内容:

  1. 项目结构
  2. 依赖项安装
  3. 数据准备
  4. 模型训练
  5. 评估模型
  6. 推理界面

完整项目结构

spine_segmentation/
├── main.py
├── train.py
├── evaluate.py
├── infer.py
├── ui_files/
│   ├── infer_ui.ui
│   ├── infer_ui.qrc
│   └── infer_ui_rc.py
├── datasets/
│   ├── spine/
│   │   ├── images/
│   │   ├── labels/
│   │   ├── train.txt
│   │   └── val.txt
├── best_spine.pt
├── requirements.txt
└── data.yaml

文件内容

requirements.txt
opencv-python==4.5.3.56
torch==1.9.0+cu111
PyQt5==5.15.4
labelme
shutil
matplotlib
scikit-image
numpy
pandas
data.yaml
train: ./datasets/spine/images/train
val: ./datasets/spine/images/valnc: 1
names: ['vertebra']
train.py
import torch
from yolov5 import train# 设置随机种子以保证可重复性
torch.manual_seed(42)# 定义数据集路径
dataset_config = 'data.yaml'# 训练模型
results = train.run(imgsz=640,batch=16,epochs=50,data=dataset_config,weights='yolov5s.pt',name='spine',project='runs/train'
)# 打印训练结果
print(results)
evaluate.py
from yolov5 import val# 初始化YOLOv5模型
model_path = 'runs/train/spine/weights/best.pt'# 评估模型
results = val.run(data='data.yaml',weights=model_path,imgsz=640,task='val'
)# 打印评估结果
print(results)
infer.py
import sys
import cv2
import numpy as np
from PyQt5.QtWidgets import QApplication, QMainWindow, QFileDialog, QMessageBox, QLabel, QPushButton, QVBoxLayout, QWidget, QProgressBar
from PyQt5.QtGui import QImage, QPixmap
from PyQt5.QtCore import QTimer
import torch
from pathlib import Path
from yolov5.utils.general import non_max_suppression, scale_coords
from yolov5.models.experimental import attempt_load
from yolov5.utils.torch_utils import select_deviceclass MainWindow(QMainWindow):def __init__(self):super(MainWindow, self).__init__()self.setWindowTitle("MRI 脊椎分割")self.setGeometry(100, 100, 800, 600)# 初始化YOLOv5模型self.device = select_device('')self.model = attempt_load('runs/train/spine/weights/best.pt', map_location=self.device)self.stride = int(self.model.stride.max())  # model strideself.imgsz = 640# 创建界面元素self.label_display = QLabel(self)self.label_display.setAlignment(Qt.AlignCenter)self.button_select_image = QPushButton("选择图片", self)self.button_select_folder = QPushButton("选择文件夹", self)self.button_select_video = QPushButton("选择视频", self)self.button_start_camera = QPushButton("开始摄像头", self)self.button_stop_camera = QPushButton("停止摄像头", self)self.progress_bar = QProgressBar(self)self.progress_bar.setVisible(False)layout = QVBoxLayout()layout.addWidget(self.label_display)layout.addWidget(self.button_select_image)layout.addWidget(self.button_select_folder)layout.addWidget(self.button_select_video)layout.addWidget(self.button_start_camera)layout.addWidget(self.button_stop_camera)layout.addWidget(self.progress_bar)container = QWidget()container.setLayout(layout)self.setCentralWidget(container)self.button_select_image.clicked.connect(self.select_image)self.button_select_folder.clicked.connect(self.select_folder)self.button_select_video.clicked.connect(self.select_video)self.button_start_camera.clicked.connect(self.start_camera)self.button_stop_camera.clicked.connect(self.stop_camera)self.timer = QTimer()self.timer.timeout.connect(self.update_frame)self.cap = Noneself.results = []def load_image(self, image_path):frame = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR)results = self.detect(frame)annotated_frame = self.draw_annotations(frame, results)return annotated_framedef detect(self, img0):img = letterbox(img0, new_shape=self.imgsz, stride=self.stride)[0]img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416img = np.ascontiguousarray(img)img = torch.from_numpy(img).to(self.device)img = img.float()  # uint8 to fp16/32img /= 255.0  # 0 - 255 to 0.0 - 1.0if img.ndimension() == 3:img = img.unsqueeze(0)pred = self.model(img, augment=False)[0]pred = non_max_suppression(pred, 0.25, 0.45, classes=None, agnostic=False)return preddef draw_annotations(self, frame, results):for det in results:if len(det):det[:, :4] = scale_coords(frame.shape[2:], det[:, :4], frame.shape).round()for *xyxy, conf, cls in reversed(det):label = f'{self.model.names[int(cls)]} {conf:.2f}'plot_one_box(xyxy, frame, label=label, color=(0, 255, 0), line_thickness=3)return framedef display_image(self, frame):rgb_image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)h, w, ch = rgb_image.shapebytes_per_line = ch * wqt_image = QImage(rgb_image.data, w, h, bytes_per_line, QImage.Format_RGB888)pixmap = QPixmap.fromImage(qt_image)self.label_display.setPixmap(pixmap.scaled(self.label_display.width(), self.label_display.height()))def select_image(self):options = QFileDialog.Options()file_path, _ = QFileDialog.getOpenFileName(self, "选择图片", "", "图片 (*.jpg *.jpeg *.png *.tif);;所有文件 (*)", options=options)if file_path:annotated_frame = self.load_image(file_path)self.display_image(annotated_frame)self.results.append((file_path, annotated_frame))def select_folder(self):folder_path = QFileDialog.getExistingDirectory(self, "选择文件夹")if folder_path:files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith(('.jpg', '.jpeg', '.png', '.tif'))]total_files = len(files)self.progress_bar.setMaximum(total_files)self.progress_bar.setValue(0)self.progress_bar.setVisible(True)for i, file_path in enumerate(files):annotated_frame = self.load_image(file_path)self.display_image(annotated_frame)self.results.append((file_path, annotated_frame))self.progress_bar.setValue(i + 1)self.progress_bar.setVisible(False)def select_video(self):options = QFileDialog.Options()file_path, _ = QFileDialog.getOpenFileName(self, "选择视频", "", "视频 (*.mp4 *.avi);;所有文件 (*)", options=options)if file_path:self.process_video(file_path)def process_video(self, video_path):self.cap = cv2.VideoCapture(video_path)while self.cap.isOpened():ret, frame = self.cap.read()if not ret:breakresults = self.detect(frame)annotated_frame = self.draw_annotations(frame, results)self.display_image(annotated_frame)self.results.append((video_path, annotated_frame))if cv2.waitKey(1) & 0xFF == ord('q'):breakself.cap.release()def start_camera(self):self.cap = cv2.VideoCapture(0)self.timer.start(30)def stop_camera(self):self.timer.stop()if self.cap is not None:self.cap.release()self.label_display.clear()def update_frame(self):ret, frame = self.cap.read()if not ret:returnresults = self.detect(frame)annotated_frame = self.draw_annotations(frame, results)self.display_image(annotated_frame)self.results.append(('camera', annotated_frame))def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):shape = img.shape[:2]  # current shape [height, width]r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])if not scaleup:  # only scale down, do not scale up (for better test mAP)r = min(r, 1.0)ratio = r, r  # width, height ratiosnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh paddingif auto:  # minimum rectangledw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh paddingelif scaleFill:  # stretchdw, dh = 0.0, 0.0new_unpad = (new_shape[1], new_shape[0])ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratiosdw /= 2  # divide padding into 2 sidesdh /= 2if shape[::-1] != new_unpad:  # resizeimg = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))left, right = int(round(dw - 0.1)), int(round(dw + 0.1))img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add borderreturn img, ratio, (dw, dh)def plot_one_box(x, img, color=None, label=None, line_thickness=None):tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1  # line/font thicknesscolor = color or [random.randint(0, 255) for _ in range(3)]c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)if label:tf = max(tl - 1, 1)  # font thicknesst_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA)  # filledcv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)if __name__ == "__main__":app = QApplication(sys.argv)window = MainWindow()window.show()sys.exit(app.exec_())

运行步骤总结

  1. 克隆项目仓库(如果有的话)

    git clone https://github.com/yourusername/spine_segmentation.git
    cd spine_segmentation
    
  2. 安装依赖项

    conda create --name spine_env python=3.8
    conda activate spine_env
    pip install -r requirements.txt
    
  3. 下载YOLOv5代码

    git clone https://github.com/ultralytics/yolov5.git
    cd yolov5
    pip install -r requirements.txt
    cd ..
    
  4. 准备数据集

    • 将你的MRI脊椎图像放入 datasets/spine/images 目录。
    • 将对应的标注文件(假设为YOLO格式的TXT文件)放入 datasets/spine/labels 目录。
    • 使用脚本划分数据集为训练集和验证集,并生成 train.txtval.txt 文件。
  5. 训练模型

    python train.py
    
  6. 评估模型

    python evaluate.py
    
  7. 运行推理界面

    python infer.py
    

操作界面

  • 选择图片进行检测:点击“选择图片”按钮,选择一张图片进行检测。
  • 选择文件夹批量检测:点击“选择文件夹”按钮,选择一个包含多张图片的文件夹进行批量检测。
  • 选择视频进行检测:点击“选择视频”按钮,选择一个视频文件进行检测。
  • 摄像头检测:点击“开始摄像头”按钮,使用摄像头进行实时检测;点击“停止摄像头”按钮停止检测。

详细解释

requirements.txt

列出项目所需的所有Python包及其版本。

data.yaml

配置数据集路径和类别信息,用于YOLOv5模型训练。

train.py

加载预训练的YOLOv5s模型并使用自定义数据集进行训练。训练完成后打印训练结果。

evaluate.py

加载训练好的YOLOv5模型并对验证集进行评估,打印评估结果。

infer.py

创建一个GUI应用程序,支持选择图片、文件夹、视频或使用摄像头进行实时检测,并显示检测结果。

http://www.dtcms.com/wzjs/322073.html

相关文章:

  • 如何用一个域名做多个网站搜索引擎广告形式有
  • 用jquery做的网站百度云建站
  • 网站设计显示日期上海网站建设
  • 做电影网站需要服务器吗企业营销策划书范文
  • 快速刷网站排名百度app下载并安装
  • 做网站用服务器纯手工seo公司
  • 网站建设寻求网站怎样优化关键词好
  • 现在哪个招聘网站做的比较好郑州seo博客
  • 山西网站建设开发上海网站排名优化怎么做
  • 网站正在建设中 模版建一个企业网站多少钱
  • 毕业设计餐饮网站建设扬州网络推广公司
  • 怎么让网站被收录推广项目的平台
  • 观澜做网站嘉兴seo报价
  • 做网站专家怎么给产品找关键词
  • 网站备案正常多久网站制作公司排名
  • 网站建设重要新如何做网络推广
  • 企业管理咨询网站宣传广告怎么做吸引人
  • web service做网站网上怎么推销自己的产品
  • 淘宝上那些做网站seo的管用吗搜索引擎平台有哪些
  • 哪个网站做logo设计师黄页网络的推广
  • 桂林黄页大全桂林本地信息网seo管家
  • 共享虚拟主机做网站够用么淘宝关键词查询
  • 网站建设及解析流程站长推荐
  • 网站制作+资讯百度seo查询工具
  • 佛山营销网站设计百度网盘资源共享
  • wordpress小分类主题杭州专业seo服务公司
  • 做临时网站搜索热词排名
  • 做动态网站用什么语言想学编程去哪里找培训班
  • web前端工程师是做什么的泉州网站seo公司
  • 游戏网站建设流程图软文范例800字