当前位置: 首页 > wzjs >正文

网站正在建设中 模版建一个企业网站多少钱

网站正在建设中 模版,建一个企业网站多少钱,外贸网站源码免费,外贸长尾关键词挖掘网站在解 LeetCode 的过程中,路径计数问题是动态规划中一个经典的例子。今天我来分享一道非常基础但极具代表性的题目——不同路径。不仅适合初学者入门 DP(动态规划),还能帮助你打下递归思维的基础。 本文将介绍: &…

在解 LeetCode 的过程中,路径计数问题是动态规划中一个经典的例子。今天我来分享一道非常基础但极具代表性的题目——不同路径。不仅适合初学者入门 DP(动态规划),还能帮助你打下递归思维的基础。

本文将介绍:

  1. 🔍 问题描述
  2. 💡 解题思路(包括递归+记忆化搜索)
  3. 🏆 代码实现与优化
  4. 📊 时间复杂度 & 空间复杂度分析
  5. 🔥 进阶思考

🔍 问题描述

一个机器人位于一个 m x n 的网格左上角(起点 Start)。

机器人每次只能向 移动一步,试图到达网格的右下角(终点 Finish)。

请问从起点到终点总共有多少条不同的路径?

✅ 示例

示例 1:

输入: m = 3, n = 7
输出: 28

示例 2:

输入: m = 3, n = 2
输出: 3
解释: 
1. 向右 -> 向下 -> 向下  
2. 向下 -> 向下 -> 向右  
3. 向下 -> 向右 -> 向下

示例 3:

输入: m = 7, n = 3
输出: 28

示例 4:

输入: m = 3, n = 3
输出: 6

💡 解题思路

1️⃣ 递归 + 记忆化搜索(自顶向下)

我们可以把每一步的选择抽象成一个状态转移问题:

  • 如果机器人在 (i, j) 位置,它可以从 上面 (i-1, j)左边 (i, j-1) 走过来。
  • 到达 (i, j) 的总路径数等于从 (i-1, j)(i, j-1) 走过来的路径数之和。

状态转移方程:

dp[i][j] = dp[i-1][j] + dp[i][j-1]

边界条件:

  • 第一行和第一列上的每个位置的路径数都是 1(因为只能往一个方向走)。

为什么需要记忆化?
如果不加记忆化,递归会重复计算相同子问题,时间复杂度会指数级上升。通过记忆化存储已经计算过的结果,避免重复计算,大大降低了复杂度。


🏆 代码实现(Java)

class Solution {public int uniquePaths(int m, int n) {// 创建一个记忆数组,存储子问题的解int[][] memo = new int[m][n];return dfs(m - 1, n - 1, memo);}// 递归搜索函数,i 表示行数,j 表示列数private int dfs(int i, int j, int[][] memo) {// 边界情况,越界直接返回 0if (i < 0 || j < 0) {return 0;}// 如果到达起点 (0,0),只有 1 条路径if (i == 0 && j == 0) {return 1;}// 如果该位置已经计算过,直接返回记忆值if (memo[i][j] != 0) {return memo[i][j];}// 从上面和左边的路径数之和return memo[i][j] = dfs(i - 1, j, memo) + dfs(i, j - 1, memo);}
}

📊 时间复杂度 & 空间复杂度分析

  • 时间复杂度: O(m * n)
    每个位置只会被访问一次,避免了重复计算。

  • 空间复杂度: O(m * n)
    使用了一个二维数组来保存子问题的解。


🔥 进阶思考:动态规划(自底向上)

除了递归+记忆化,还可以使用**动态规划(DP)**的方式自底向上求解,避免了递归的栈消耗。

代码实现(DP):

class Solution {public int uniquePaths(int m, int n) {int[][] dp = new int[m][n];// 初始化边界条件for (int i = 0; i < m; i++) dp[i][0] = 1;for (int j = 0; j < n; j++) dp[0][j] = 1;// 状态转移方程填表for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}return dp[m - 1][n - 1];}
}

时间复杂度: O(m * n)
空间复杂度: O(m * n)(可以优化到 O(n),只用一维数组)


📚 其他进阶解法(组合数学)

如果你喜欢数学,可以用组合数的公式来解这道题:

  • 一共需要移动 m-1 步向下,n-1 步向右。
  • 总共 m+n-2 步,从中选择 m-1 步向下。

公式:

C(m+n−2,m−1)=(m+n−2)!(m−1)!⋅(n−1)!C(m + n - 2, m - 1) = \frac{(m + n - 2)!}{(m - 1)! \cdot (n - 1)!}

Java 实现:

class Solution {public int uniquePaths(int m, int n) {long res = 1;for (int i = 1; i <= m - 1; i++) {res = res * (n - 1 + i) / i;}return (int) res;}
}

时间复杂度: O(min(m, n))
空间复杂度: O(1)


🎯 总结

  • 🚀 使用 递归+记忆化搜索 解决子问题,避免重复计算。
  • 🏆 使用 动态规划 解决自底向上的问题,避免递归栈溢出。
  • 组合数学 提供最优解法,时间复杂度低,适合大规模输入。

如果你觉得这篇文章对你有帮助,别忘了点赞👍、收藏⭐和关注👀!欢迎在评论区和我交流更多动态规划的问题!


📢 更多 LeetCode 动态规划题解,敬请期待!

http://www.dtcms.com/wzjs/322061.html

相关文章:

  • 毕业设计餐饮网站建设扬州网络推广公司
  • 怎么让网站被收录推广项目的平台
  • 观澜做网站嘉兴seo报价
  • 做网站专家怎么给产品找关键词
  • 网站备案正常多久网站制作公司排名
  • 网站建设重要新如何做网络推广
  • 企业管理咨询网站宣传广告怎么做吸引人
  • web service做网站网上怎么推销自己的产品
  • 淘宝上那些做网站seo的管用吗搜索引擎平台有哪些
  • 哪个网站做logo设计师黄页网络的推广
  • 桂林黄页大全桂林本地信息网seo管家
  • 共享虚拟主机做网站够用么淘宝关键词查询
  • 网站建设及解析流程站长推荐
  • 网站制作+资讯百度seo查询工具
  • 佛山营销网站设计百度网盘资源共享
  • wordpress小分类主题杭州专业seo服务公司
  • 做临时网站搜索热词排名
  • 做动态网站用什么语言想学编程去哪里找培训班
  • web前端工程师是做什么的泉州网站seo公司
  • 游戏网站建设流程图软文范例800字
  • 外贸网站怎么做谷歌搜索十大接单推广app平台
  • 做app 需要先做网站吗微商软文推广平台
  • 外贸设计网站建设推广平台排行榜
  • 网站改版的步骤网站关键词排名优化方法
  • 导入表格做地图中热力网站关键词调词平台
  • 做网站 使用权 所有权百度交易平台官网
  • wordpress如何改文章id网站优化建议
  • 幼儿园网站怎么做英文谷歌seo
  • 如何建立网站和网页品牌推广的作用
  • 怎么用链接进自己做的网站吗市场调研方法