当前位置: 首页 > wzjs >正文

住建网证书查询seo谷歌外贸推广

住建网证书查询,seo谷歌外贸推广,一级建造师报考条件2022考试时间,企业网站制作设量化(Quantization)是 加速模型推理、减少内存占用 的关键技术,特别适用于 边缘设备 或 低算力 GPU/CPU 服务器。本指南介绍 Hugging Face 量化部署的 原理、方法、代码示例,帮助企业 优化 AI 生产环境。 1. 量化的作用 &#x…

量化(Quantization)是 加速模型推理减少内存占用 的关键技术,特别适用于 边缘设备低算力 GPU/CPU 服务器。本指南介绍 Hugging Face 量化部署的 原理、方法、代码示例,帮助企业 优化 AI 生产环境

1. 量化的作用

🔹 减少模型大小(如 BERT-base 从 400MB → 100MB)
🔹 加速推理(CPU 上可提升 2~4 倍)
🔹 降低显存占用(适合 LoRA + 量化 进行推理)

适用场景: ✅ 模型推理(Inference),如 GPTLLaMA
边缘设备(Edge AI),如 Jetson移动端
云端 CPU 部署,降低成本

2. Hugging Face 量化方法

方法支持库适用场景量化类型代码复杂度
bitsandbytestransformers推理(LoRA 兼容)8-bit / 4-bit
torch.compile + quantizationPyTorch训练+推理int8⭐⭐
ONNX + INT8onnxruntime跨平台(CPU/GPU)int8⭐⭐⭐
TensorRTNVIDIA TensorRTGPU 端部署int8⭐⭐⭐⭐

3. 方法 1:bitsandbytes(轻量 8-bit / 4-bit 量化)

Hugging Face 支持 bitsandbytes 4-bit/8-bit 量化,适用于 LLaMA、ChatGLM、BERTTransformer 模型

(1)安装 bitsandbytes

pip install transformers accelerate bitsandbytes

 (2)加载 8-bit 量化模型

from transformers import AutoModelForCausalLM, AutoTokenizermodel_name = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_name,device_map="auto",  # 自动分配 GPUload_in_8bit=True   # 8-bit 量化
)
tokenizer = AutoTokenizer.from_pretrained(model_name)# 测试推理
inputs = tokenizer("Hello, how are you?", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0]))

显存减少 2~3 倍(LLaMA 7B 40GB → 20GB
支持 LoRA 微调(低资源环境可训练)

 (3)加载 4-bit 量化模型(更极致优化)

from transformers import BitsAndBytesConfigquant_config = BitsAndBytesConfig(load_in_4bit=True,     # 开启 4-bit 量化bnb_4bit_quant_type="nf4",  # NormalFloat4 精度更优bnb_4bit_use_double_quant=True,  # 进一步减少显存占用bnb_4bit_compute_dtype="float16"
)model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", quantization_config=quant_config
)

进一步减少显存占用(4-bit 量化比 8-bit 更省)
适合大模型部署(如 LLaMA 13B 只需 12GB 显存

4. 方法 2:PyTorch 训练+推理量化(FP16/INT8)

适用于 训练与推理兼容 的量化优化。

(1)安装 PyTorch 量化工具

pip install torch torchvision torchaudio

(2)静态量化(Static Quantization)

适用于 CPU 部署,可将 BERT、GPT-2 转换为 INT8 以加速推理:

import torch
from transformers import AutoModel, AutoTokenizermodel_name = "bert-base-uncased"
model = AutoModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)# 量化前模型大小
print(f"Original Model Size: {model.num_parameters()} params")# 量化
model_quantized = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8
)# 量化后模型大小
print(f"Quantized Model Size: {model_quantized.num_parameters()} params")

 ✅ CPU 端推理加速 2~4 倍
模型大小减少 4 倍(FP32 → INT8)

5. 方法 3:ONNX Runtime(跨平台 INT8 量化)

适用于 CPU/GPU/移动端 部署:

pip install onnx onnxruntime onnxruntime-tools

 (1)转换 Hugging Face 模型为 ONNX

from transformers import AutoModel
import torchmodel = AutoModel.from_pretrained("bert-base-uncased")
dummy_input = torch.ones(1, 128, dtype=torch.int64)torch.onnx.export(model, dummy_input, "bert.onnx", opset_version=12, input_names=["input"]
)

(2)使用 ONNX Runtime 量化

from onnxruntime.quantization import quantize_dynamicquantize_dynamic("bert.onnx", "bert_quantized.onnx")

跨平台支持(Windows/Linux/ARM 设备)
比 PyTorch 量化更高效(INT8 计算优化)

6. 方法 4:TensorRT(NVIDIA GPU 加速)

适用于 高性能 GPU(A100、RTX 4090) 部署:

pip install tensorrt

 (1)将 Hugging Face 模型转换为 TensorRT

from transformers import AutoModel
from torch2trt import torch2trtmodel = AutoModel.from_pretrained("bert-base-uncased").cuda()
dummy_input = torch.ones(1, 128, dtype=torch.int64).cuda()model_trt = torch2trt(model, [dummy_input])
torch.save(model_trt.state_dict(), "bert_trt.pth")

比 FP16 推理快 2~3 倍
✅ **适合 高吞吐量 推理任务

7. Hugging Face 量化方法对比

方法适用环境量化方式加速比
bitsandbytesGPU(推理)8-bit / 4-bit⭐⭐⭐
torch.quantizationCPU(训练+推理)INT8⭐⭐⭐⭐
ONNXCPU/GPU(跨平台)INT8⭐⭐⭐⭐
TensorRTGPU(高吞吐)INT8⭐⭐⭐⭐⭐

8. 总结

轻量化部署bitsandbytes(8-bit/4-bit),适用于 LLaMA、GPT-3.5
CPU 加速torch.quantization(INT8),适用于 BERT、RoBERTa
跨平台支持ONNX(INT8),适用于 Web/移动端
高性能 GPUTensorRT(INT8),适用于 大规模推理

推荐方案

  • 大语言模型(LLaMA、GPT)bitsandbytes(4-bit/8-bit)

  • 企业 CPU 服务器(低成本)torch.quantization(INT8)

  • 移动端/云端推理ONNX(INT8)

  • 高性能 GPU 部署TensorRT(INT8)

这样,企业可以 高效降低 AI 部署成本,提高推理速度 🚀!

http://www.dtcms.com/wzjs/308486.html

相关文章:

  • 可以做热图的在线网站我要推广网
  • 济南信息化网站哪家网络公司比较好
  • 苏州知名高端网站建设公司seo培训教程视频
  • 现在手机网站用什么做的好宁波seo资源
  • mcms怎么做网站广州头条今日头条新闻
  • 网上做网站怎么赚钱广告联盟有哪些
  • 做网站膜网站怎么做市场营销培训
  • 佛山企业网站建设技术关键词如何排名在首页
  • 个人网站怎么做湖北百度关键词排名软件
  • 蓝色系网站设计小米的推广软文
  • 哪些网站可以找到做药人的信息盐城seo优化
  • 深圳网络公司做网站北京seo关键词排名
  • 设计投稿的网站有什么网上竞价
  • 站内推广和站外推广的区别今日头条淄博新闻
  • 河北邯郸seo网站建设网站优化文大侠seo博客
  • 旅游网站开发现状公司推广文案
  • 满洲里建设局网站google搜索引擎入口下载
  • 做网站的软件page360地图下载最新版
  • 利用小说网站做本站优化韩国搜索引擎排名
  • 丽江网络推广公司关键词推广seo怎么优化
  • 在ps做网站分辨率96可以吗b2b模式的电商平台有哪些
  • 熊掌号接合网站做seo百度刷自己网站的关键词
  • 北京网站建设石榴汇网站seo 优化
  • 常见的微网站平台有哪些百度推广怎么收费标准案例
  • 网站的前期调研怎么做新开发的app怎么推广
  • 厦门黄页seo关键词排名优化方法
  • 服饰网站建设技术方案风云榜百度
  • 视屏网站的审核是怎么做的流量推广平台
  • 做竞争小的网站北京网络推广有哪些公司
  • 做网站工作辛苦吗单页面seo搜索引擎优化