当前位置: 首页 > wzjs >正文

上海的外贸网站建设公司价格搜索引擎营销推广

上海的外贸网站建设公司价格,搜索引擎营销推广,静态网站开发环境,wordpress同步公众号一、分布检验 1 四种常用函数 dnorm: density norm,表示正太分布的概率密度(f),即单点取值的概率。如果生成序列点回复即得到正太线pnorm:pribability,表示正态分布的累积分布,最终…

一、分布检验

1 四种常用函数

  • dnorm: density norm,表示正太分布的概率密度(f),即单点取值的概率。如果生成序列点回复即得到正太线
  • pnorm:pribability,表示正态分布的累积分布,最终生成CDF线
  • qnorm:与pnorm相反,pnorm根据数值求累积分布(0-1),qnorm根据累积分布求数值
  • rnorm:生成一组正太随机数。

2 各种分布与检验

2.1 对数分布和检验

library(MASS) # 1.1 log-noraml distribution
## 拟合lognormal模型
lognormal_distr <- fitdistr(as.array(data[,1]),"lognormal")
## 依次输出模型的系数、方差、最大似然值
lognormal_distr$estimate  
lognormal_distr$sd
lognormal_distr$loglik
## 图形分布 + 拟合分布
par(pin=c(5,5))
h_lognormal <-hist(as.array(data[,1]),ylim = c(0,230), main = "Histogram of lognormal",xlab='data')   # 绘制源数据的直方图
xfit <-seq(min(data[,1]), max(data[,1]), by=(max(data[,1])-min(data[,1]))/1000)
yfit <-dlnorm(xfit, meanlog = lognormal_distr$estimate[1], sdlog = lognormal_distr$estimate[2])
yfit <- yfit*diff(h_lognormal$mids[1:2])*length(xfit)
lines(xfit, yfit, col="blue", lwd=2)# K-S test
## 没有直接检验对数正态分布的函数,需要转化后用对数分布检验
lognormal <- c(data[,1])
lognormal_to_normal <- log(lognormal)
## 进行K-S test 并输出结果
lognormal_ks_test <- ks.test(lognormal_to_normal, "pnorm")
lognormal_ks_test# A-D test
library(fBasics)
lognormal_ad_test <- adTest(lognormal_to_normal)
lognormal_ad_test
# Q-Q图
## 自己实现QQ图
t <- (rank(lognormal_to_normal) -0.5)/length(lognormal_to_normal)
q <- qnorm(t)
plot(q, lognormal_to_normal,main = "Lognormal Q-Q plot",xlab = "Theoretical Quantiles",ylab = "Sample Quantiles")
abline(mean(lognormal_to_normal), sd(lognormal_to_normal), col=2, lwd=3)

2.2 gamma分布

# 1.2 gamma distribution
## 拟合gamma模型
gamma_distr <- fitdistr(as.array(data[,1]),"gamma")
## 依次输出模型的系数、方差、最大似然值
gamma_distr$estimate  
gamma_distr$sd
gamma_distr$loglik
## 图形分布 + 拟合分布
par(pin=c(5,5))
h_gamma <-hist(as.array(data[,1]),ylim = c(0,230),main = "Histogram of Gamma",xlab='data')   # 绘制源数据的直方图
xfit <-seq(min(data[,1]), max(data[,1]), by=(max(data[,1])-min(data[,1]))/1000)
yfit <-dgamma(xfit, shape = gamma_distr$estimate[1], rate = gamma_distr$estimate[2])
yfit <- yfit*diff(h_gamma$mids[1:2])*length(xfit)
lines(xfit, yfit, col="blue", lwd=2)# K-S test
## 没有直接检验对数正态分布的函数,需要转化后用对数分布检验
gamma_ks_test <- ks.test(as.array(data[,1]), "gamma")
gamma_ks_test
## 进行K-S test 并输出结果
gamma_ad_test <- adTest(as.array(data[,1]), "pnorm")
gamma_ad_test# Q-Q图 只能使用自己的QQ图画法
## 自己实现QQ图
gamma_data <- as.array(data[,1])
t <- (rank(gamma_data) -0.5)/length(gamma_data)
q <- qgamma(t,shape = gamma_distr$estimate[1], rate = gamma_distr$estimate[2])
plot(q, gamma_data,main = "Gamma Q-Q plot",xlab = "Theoretical Quantiles",ylab = "Sample Quantiles")
abline(0, 1, col=2, lwd=3)

2.3 帕累托分布

# 1.3 pareto distribution
library(actuar)
library(fitdistrplus)
pareto_data <- as.vector(as.array(data[,1]))
## 拟合pareto模型, method='mle'需要指定
pareto_distr <- fitdist(pareto_data,"pareto",method = 'mle', start=list(shape=0.1, scale=0.1))
## 依次输出模型的系数、方差、最大似然值
pareto_distr$estimate
pareto_distr$sd
pareto_distr$loglik
## 图形分布 + 拟合分布
par(pin=c(5,5))
h_pareto <-hist(pareto_data,ylim = c(0,230),main = "Histogram of Pareto",xlab='data')   # 绘制源数据的直方图
xfit <-seq(min(data[,1]), max(data[,1]), by=(max(data[,1])-min(data[,1]))/1000)
yfit <-dpareto(xfit, shape = pareto_distr$estimate[1], scale = pareto_distr$estimate[2])
yfit <- yfit*diff(h_pareto$mids[1:2])*length(xfit)
lines(xfit, yfit, col="blue", lwd=2)# K-S test
## 没有直接检验对数正态分布的函数,需要转化后用对数分布检验
t <- (rank(pareto_data) -0.5)/length(pareto_data)
q <- qweibull(t, shape = pareto_distr$estimate[1], scale = pareto_distr$estimate[2])
pareto_ks_test <- ks.test(as.array(data[,1]), q)
pareto_ks_test
# A-D test
pareto_ad_test <- adTest(as.array(data[,1]), "pnorm")
pareto_ad_test# Q-Q图 只能使用自己的QQ图画法
## 自己实现QQ图
plot(q, pareto_data,main = "Pareto Q-Q plot",xlab = "Theoretical Quantiles",ylab = "Sample Quantiles")
abline(0, 1, col=2, lwd=3)

2.4 weibull分布

## 拟合weibull模型
weibull_distr <- fitdistr(as.array(data[,1]),"weibull")
## 依次输出模型的系数、方差、最大似然值
weibull_distr$estimate  
weibull_distr$sd
weibull_distr$loglik
## 图形分布 + 拟合分布
par(pin=c(5,5))
weibull_data <- as.array(data[,1])
h_weibull <-hist(weibull_data,ylim = c(0,230),main = "Histogram of Weibull",xlab='data')   # 绘制源数据的直方图
xfit <-seq(min(data[,1]), max(data[,1]), by=(max(data[,1])-min(data[,1]))/1000)
yfit <-dweibull(xfit, shape = weibull_distr$estimate[1], scale = weibull_distr$estimate[2])
yfit <- yfit*diff(h_weibull$mids[1:2])*length(xfit)
lines(xfit, yfit, col="blue", lwd=2)# K-S test
## 没有直接检验对数正态分布的函数,需要转化后用对数分布检验
t <- (rank(weibull_data) -0.5)/length(weibull_data)
q <- qweibull(t, shape = weibull_distr$estimate[1], scale = weibull_distr$estimate[2])
weibull_ks_test <- ks.test(as.array(data[,1]), q)
gamma_ks_test
# A-D test
weibull_ad_test <- adTest(as.array(data[,1]), "pnorm")
weibull_ad_test# Q-Q图 只能使用自己的QQ图画法
## 自己实现QQ图
plot(q, weibull_data,main = "Weibull Q-Q plot",xlab = "Theoretical Quantiles",ylab = "Sample Quantiles")
abline(0, 1, col=2, lwd=3)

二、方差分析

1 方差分析

1.1 单因素分析

attach(linseed) 
table(Plot)  
result_mean <-aggregate(Yield,by = list(Plot),FUN= mean)
result_sd <-  aggregate(Yield,by = list(Plot),FUN= sd)
fit<-aov(Yield~Plot) 
summary(fit)
TukeyHSD(fit) 
detach(linseed)

1.2 双因素方差分析


attach(wafer)      # 锁定数据集
table(Furnace, Wafer_Type)    # 交叉查看两个因素
result_mean <- aggregate(Thickness , by = list(Furnace, Wafer_Type) , FUN = mean)    # 交叉均值
result_df <- aggregate(Thickness  by = list(Furnace, Wafer_Type) , FUN = sd)        # 交叉方差
fit <- aov(Thickness ~ Furnace * Wafer.Type)    # 双因素方差分析
summary(fit)   # 输入结论
TukeyHSD(fit)    # 对任意两组输出Tukey honest significant differences
detach(wafer)  # 解锁数据集

2 列联表分析

  1. 双向无序列联表:行和列均只有两个且无序,使用Pearson卡方检验、Fisher精确概率
  2. 单项有序的列联表:常见的情况是结果变量有序,而原因变量无序。用Mann–Whitney U 检验、Kruskal-Wallis H检验
  3. 行列有序且属性相同:比如两列但阴阳。行列变量独立: Kappa一致性检验-即交叉表。配对行列表-McNemar检验、Bowker检验。

2.1 Pearson卡方检验

df <- tibble(count = c(56,283,55,360), Gender = c("Male", "Male", "Female", "Female"), Response = c("Mentioned", "Not Mentioned", "Mentioned","Not Mentioned"))
tbl <- xtabs(count~Response+Gender, df)   # 生成一个列联表
chisq.test(tbl) # 结果结合皮尔逊系数检验即可

2.2 Kruskal-Wallis H

df<-tibble(Grade = rep(c("A", "B", "C", "D-F"),3), count = c(8,14,15,3,15,19,4,1,13,15,7,4), major = c(rep("Psychology",4), rep("Biology",4), rep("Other",4)))xtabs(count~Grade+major, df)%>%
kable("html",table.attr = "style='width:50%;'",align = "c")%>%kable_styling(position = "center")# 这里专业是无序的,成绩是有序的,且分组数大于2,使用Kruskal-Wallis H
df$major_and_grade <- paste(df$Grade,df$major,sep="~")
kruskal.test(count~major_and_grade,data=df)

三、相关性分析

1 皮尔森相关系数

pearson_test <- cor.test(as.array(tem_data$age), as.array(tem_data$confidence),  method = "pearson", use = "complete.obs")

http://www.dtcms.com/wzjs/296571.html

相关文章:

  • 社区网站如何做沈阳关键词推广
  • 建设淘宝网站的目的软件外包公司排行
  • 做游戏人设计网站关键词挖掘工具免费
  • 冷水滩城乡建设局网站怎么推广一个app
  • 免费网络爬虫网站推广软文范文
  • 网站注销备案app推广方式
  • 北京互联网建站网站抖音关键词挖掘工具
  • .net wap网站郑州全域静态管理
  • 2018年网站建设发言怎么优化自己公司的网站
  • 做网站需要投入多少钱武汉seo服务多少钱
  • 做.net网站流程电工培训技术学校
  • ui做的好的网站有哪些网络营销教案ppt
  • 高端企业网站建设流程seo管理与优化期末试题
  • 自己做网站美工找片子有什么好的关键词
  • icp网站备案密码找回网络营销网站设计
  • 做推广任务的网站百度搜索关键词设置
  • 赣州市建设局网站seo课程心得体会
  • 双十一网站建设小说网站排名人气
  • server2012做网站简述什么是网络营销
  • 购物网站后台订单处理流程站长之家查询的网址
  • 个体户可以做网站么怎样自己做网站
  • 网站建设的视频长沙网站seo报价
  • 网站宣传高新技术企业搜索引擎优化要考虑哪些方面
  • 最新天气预报最新消息品牌关键词优化哪家便宜
  • b2b网站流量建设营销自动化工具
  • 途牛网站大数据建设seo优化是怎么回事呢
  • 网站怎么做备份uc浏览器关键词排名优化
  • 创造与魔法官方网站做自己喜欢的事今日新闻最新事件
  • 岳麓区专业的建设网站公司seo标题优化
  • 做企业网站找谁引擎搜索是什么意思