当前位置: 首页 > wzjs >正文

wordpress能建论坛么福州整站优化

wordpress能建论坛么,福州整站优化,服装网站建设教程,创建一个网页要钱吗前言 从15年开始,在深度学习的重要模型中,AutoEncoder(自编码器)可以说是打开生成模型世界的起点。它不仅是压缩与重建的工具,更是VAE、GAN、DIffusion等复杂生成模型的思想起源。其实AutoEncoder并不复杂,…

前言

从15年开始,在深度学习的重要模型中,AutoEncoder(自编码器)可以说是打开生成模型世界的起点。它不仅是压缩与重建的工具,更是VAE、GAN、DIffusion等复杂生成模型的思想起源。其实AutoEncoder并不复杂,它是以一种无监督的方式教会模型将复杂的数据转换成一种更简单的表现形式


一、什么是AutoEncoder

AutoEncoder是一种无监督学习模型,其目标是通过编码器将输入压缩成低维的隐藏表示,称为隐空间,再通过解码器将其还原回原始输入。总的来说,就是:编码器压缩,解码器还原

编码器主要由两部分组成:

  • Encoder:把输入 x 映射到潜在表示 Z
  • Decoder:再将 Z 还原为近似输入的 x 


二、AutoEncoder的原理

前面我已经说了,AutoEncoder是一种神经网络,主要是用来学习数据的表示,尝试用尽可能少的特征来描述大量数据,实现数据压缩,例如下图所示:

 Encoder将输入数据压缩成潜在空间表示,潜在空间是一个低维空间,捕捉了输入数据的核心特征,Decoder则从潜在空间产生的压缩表示中重建原始数据

例如编码图像,对于上面的小狗头像,编码其将图像降维到几个关键特征,潜在空间保存这些特征,解码器再从这些低维特征中重建图像。


三、如何训练AutoEncoder 

我们已经知道了AutoEncoder工作的原理,那么训练自编码器就是最小化原始数据与重建数据之间的差异,目的是提高解码器根据隐空间表示准确重建原始数据的能力,同时,编码器也以一种更好的方式压缩数据,确保原始数据被有效地重建。

通常,我们使用MSE来表示原始数据与重建数据的差异:

Loss= \frac {1}{n}\sum _{i=1}^{n}(y-\hat y)^2


四、隐空间维度的影响

我们已经知道了如何训练AutoEncoder,接下来我们讨论一下隐空间维度对模型的影响。

我们已经知道,AutoEncoder的优势就是它能够进行数据降维,隐空间的维度是由隐空间层的神经元数量决定的,如果隐空间层神经元数量为2,则隐空间就是二维的。接下来我将使用MINST手写数字数据集,训练AutoEncoder,并可视化一下隐空间维度对模型影响。

训练AutoEncoder:

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision
from torch.utils.data import DataLoader
from torchvision import transformstransform = transforms.ToTensor()
train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)class AutoEncoder(nn.Module):def __init__(self):super(AutoEncoder, self).__init__()self.encoder = nn.Sequential(nn.Linear(784, 128),nn.ReLU(),nn.Linear(128, 64))self.decoder = nn.Sequential(nn.Linear(64, 128),nn.ReLU(),nn.Linear(128, 784),nn.Sigmoid())def forward(self, x):x = x.view(x.size(0), -1)z = self.encoder(x)out = self.decoder(z)return outmodel = AutoEncoder()
optimizer = optim.Adam(model.parameters(), lr=1e-3)
loss_fn = nn.MSELoss()for epoch in range(5):for imgs, _ in train_loader:imgs = imgs.view(imgs.size(0), -1)out = model(imgs)loss = loss_fn(out, imgs)optimizer.zero_grad()loss.backward()optimizer.step()print(f"Epoch {epoch}: Loss={loss.item():.4f}")

可视化:

import matplotlib.pyplot as plt
# 设置中文字体为黑体(可选字体)
plt.rcParams['font.sans-serif'] = ['SimHei']
# 正确显示负号  
plt.rcParams['axes.unicode_minus'] = False   model.eval()
with torch.no_grad():for imgs, _ in train_loader:imgs = imgsout = model(imgs)break  # 只看一批就够了imgs = imgs.cpu().view(-1, 1, 28, 28)
out = out.cpu().view(-1, 1, 28, 28)# 显示原图与重建图
n = 10
plt.figure(figsize=(20, 4))
for i in range(n):# 原图ax = plt.subplot(2, n, i + 1)plt.imshow(imgs[i].squeeze(), cmap='gray')plt.title("原始图")plt.axis("off")# 重建图ax = plt.subplot(2, n, i + 1 + n)plt.imshow(out[i].squeeze(), cmap='gray')plt.title("重构图")plt.axis("off")
plt.show()

当隐空间层的维度设置为2时,训练好的AutoEncoder的效果为:

 当隐空间层的维度设置为64时,训练好的AutoEncoder的效果为:

通过对比发现,隐空间的维度大小直接重构数据的质量, 为什么或这样呢?

其实这很好解释,因为AutoEncoder的任务就是压缩、重建,较差的重建质量说明隐空间的组织性较差,因为好的隐空间表示能够将每种类型的数字聚类成一簇。但是较低的隐空间维度虽然也能使得一些类型聚类成簇,但是会导致它们相互重叠,很大概率集中在同一区域,而且可能存在系数现象,如下图所示:

 而更高的维度之间的聚类的分隔度更高,但是仍然会有重叠的部分出现。


五、AutoEncoder的局限

AutoEncoder的最大的局限性就是隐空间,因为AutoEncoder只依赖重建损失来组织隐空间,虽然表现良好,但是通过第四部分我们可以知道,聚类的簇并不是特别完美。为此,大多数基于此类的自编码器都会对隐空间进行正则化,而其中最有名的就是变分自编码器(VAE)。当然,之后我会详细的介绍VAE。


总结

以上就是AutoEncoder的全部内容,相信小伙伴们已经对AutoEncoder有了深刻的理解:AutoEncoder是深度学习中一个经典且充满启发的结构,压缩重构的结构,能够学到数据的“核心特征”,为后续的复杂的生成模型奠定了基础。


如果小伙伴们觉得本文对各位有帮助,欢迎:👍点赞 | ⭐ 收藏 |  🔔 关注。我将持续在专栏《人工智能》中更新人工智能知识,帮助各位小伙伴们打好扎实的理论与操作基础,欢迎🔔订阅本专栏,向AI工程师进阶!

http://www.dtcms.com/wzjs/286397.html

相关文章:

  • 如何做网上销售网站直接进入网站的代码
  • 做网站的怎么办理营业执照登封网站关键词优化软件
  • 网站制作软件都是什么全网营销平台有哪些
  • 精品课程网站建设申报成人技能培训机构
  • 西部数码成品网站后台成都网络营销推广公司
  • dw免费网站模板搜索引擎成功案例分析
  • 品牌推广案例及方案seo关键词优化怎么做
  • 地方门户网站建设宁波网站优化公司价格
  • 从网站优化之角度出发做网站策划google搜索引擎入口 镜像
  • 重庆seo博客推广排名seo怎么样
  • seo网站推广报价站内关键词排名软件
  • 做简单视频网站自己看电商运营主要工作内容
  • 攻击自己做的网站网络营销成功的原因
  • 九江网站建设哪家好下载优化大师
  • 专注营销型网站建设公司 做网站软文广告案例
  • 澳门赌网站怎么做代理优化大师有必要安装吗
  • 建网站需要注意的问题网站优化推广平台
  • 水务局政务网站建设工作总结seo优化排名易下拉用法
  • 镇江网站seo公司seo网站培训班
  • 南宁网站建设 传导网站关键词公司
  • 淘宝客建立网站推广怎么做seo技术教学视频
  • 网站背景深圳全网推广排名
  • 餐厅网站建设方案百度提交入口网站
  • wordpress 文章 urlgoogleseo优化
  • 万维网网站服务的名称个人信息怎么在百度推广
  • wordpress 年份seo是搜索引擎营销
  • 内蒙古城乡和住房建设厅网站网络销售话术900句
  • 网站建设的程序网站设计公司有哪些
  • app与网站的关系app推广接单发布平台
  • 中国网站制作公司排名网页开发需要学什么