当前位置: 首页 > wzjs >正文

贵阳优化网站建设上海关键词优化的技巧

贵阳优化网站建设,上海关键词优化的技巧,六安网站制作多少钱,网站建设项目招标标书作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.util…

作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
import os
import time
from torchvision import models# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 定义通道注意力
class ChannelAttention(nn.Module):def __init__(self, in_channels, ratio=16):super().__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.fc = nn.Sequential(nn.Linear(in_channels, in_channels // ratio, bias=False),nn.ReLU(),nn.Linear(in_channels // ratio, in_channels, bias=False))self.sigmoid = nn.Sigmoid()def forward(self, x):b, c, h, w = x.shapeavg_out = self.fc(self.avg_pool(x).view(b, c))max_out = self.fc(self.max_pool(x).view(b, c))attention = self.sigmoid(avg_out + max_out).view(b, c, 1, 1)return x * attention## 空间注意力模块
class SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super().__init__()self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = torch.mean(x, dim=1, keepdim=True)max_out, _ = torch.max(x, dim=1, keepdim=True)pool_out = torch.cat([avg_out, max_out], dim=1)attention = self.conv(pool_out)return x * self.sigmoid(attention)## CBAM模块
class CBAM(nn.Module):def __init__(self, in_channels, ratio=16, kernel_size=7):super().__init__()self.channel_attn = ChannelAttention(in_channels, ratio)self.spatial_attn = SpatialAttention(kernel_size)def forward(self, x):x = self.channel_attn(x)x = self.spatial_attn(x)return x# 自定义ResNet18模型,插入CBAM模块
class ResNet18_CBAM(nn.Module):def __init__(self, num_classes=10, pretrained=True, cbam_ratio=16, cbam_kernel=7):super().__init__()# 加载预训练ResNet18self.backbone = models.resnet18(pretrained=pretrained) # 修改首层卷积以适应32x32输入self.backbone.conv1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)self.backbone.maxpool = nn.Identity()  # 移除原始MaxPool层# 在每个残差块组后添加CBAM模块self.cbam_layer1 = CBAM(in_channels=64, ratio=cbam_ratio, kernel_size=cbam_kernel)self.cbam_layer2 = CBAM(in_channels=128, ratio=cbam_ratio, kernel_size=cbam_kernel)self.cbam_layer3 = CBAM(in_channels=256, ratio=cbam_ratio, kernel_size=cbam_kernel)self.cbam_layer4 = CBAM(in_channels=512, ratio=cbam_ratio, kernel_size=cbam_kernel)# 修改分类头self.backbone.fc = nn.Linear(in_features=512, out_features=num_classes)def forward(self, x):x = self.backbone.conv1(x)x = self.backbone.bn1(x)x = self.backbone.relu(x)  # [B, 64, 32, 32]# 第一层残差块 + CBAMx = self.backbone.layer1(x)  # [B, 64, 32, 32]x = self.cbam_layer1(x)# 第二层残差块 + CBAMx = self.backbone.layer2(x)  # [B, 128, 16, 16]x = self.cbam_layer2(x)# 第三层残差块 + CBAMx = self.backbone.layer3(x)  # [B, 256, 8, 8]x = self.cbam_layer3(x)# 第四层残差块 + CBAMx = self.backbone.layer4(x)  # [B, 512, 4, 4]x = self.cbam_layer4(x)# 全局平均池化 + 分类x = self.backbone.avgpool(x)  # [B, 512, 1, 1]x = torch.flatten(x, 1)  # [B, 512]x = self.backbone.fc(x)  # [B, num_classes]return x# ==================== 数据加载修改部分 ====================
# 数据集路径
train_data_dir = 'archive/Train_Test_Valid/Train'
test_data_dir = 'archive/Train_Test_Valid/test'# 获取类别数量
num_classes = len(os.listdir(train_data_dir))
print(f"检测到 {num_classes} 个类别")# 数据预处理
train_transform = transforms.Compose([transforms.RandomResizedCrop(32),transforms.RandomHorizontalFlip(),transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])test_transform = transforms.Compose([transforms.Resize(32),transforms.CenterCrop(32),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])# 加载数据集
train_dataset = datasets.ImageFolder(root=train_data_dir, transform=train_transform)
test_dataset = datasets.ImageFolder(root=test_data_dir, transform=test_transform)train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=4)print(f"训练集大小: {len(train_dataset)} 张图片")
print(f"测试集大小: {len(test_dataset)} 张图片")# ==================== 训练函数 ====================
def set_trainable_layers(model, trainable_parts):print(f"\n---> 解冻以下部分并设为可训练: {trainable_parts}")for name, param in model.named_parameters():param.requires_grad = Falsefor part in trainable_parts:if part in name:param.requires_grad = Truebreakdef train_staged_finetuning(model, criterion, train_loader, test_loader, device, epochs):optimizer = Noneall_iter_losses, iter_indices = [], []train_acc_history, test_acc_history = [], []train_loss_history, test_loss_history = [], []for epoch in range(1, epochs + 1):epoch_start_time = time.time()# 动态调整学习率和冻结层if epoch == 1:print("\n" + "="*50 + "\n🚀 **阶段 1:训练注意力模块和分类头**\n" + "="*50)set_trainable_layers(model, ["cbam", "backbone.fc"])optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3)elif epoch == 6:print("\n" + "="*50 + "\n✈️ **阶段 2:解冻高层卷积层 (layer3, layer4)**\n" + "="*50)set_trainable_layers(model, ["cbam", "backbone.fc", "backbone.layer3", "backbone.layer4"])optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-4)elif epoch == 21:print("\n" + "="*50 + "\n🛰️ **阶段 3:解冻所有层,进行全局微调**\n" + "="*50)for param in model.parameters(): param.requires_grad = Trueoptimizer = optim.Adam(model.parameters(), lr=1e-5)# 训练循环model.train()running_loss, correct, total = 0.0, 0, 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append((epoch - 1) * len(train_loader) + batch_idx + 1)running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_loss_history.append(epoch_train_loss)train_acc_history.append(epoch_train_acc)# 测试循环model.eval()test_loss, correct_test, total_test = 0, 0, 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_loss_history.append(epoch_test_loss)test_acc_history.append(epoch_test_acc)print(f'Epoch {epoch}/{epochs} 完成 | 耗时: {time.time() - epoch_start_time:.2f}s | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')# 绘图函数def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('训练和测试准确率')plt.legend(); plt.grid(True)plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('训练和测试损失')plt.legend(); plt.grid(True)plt.tight_layout()plt.show()print("\n训练完成! 开始绘制结果图表...")plot_iter_losses(all_iter_losses, iter_indices)plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc# ==================== 主程序 ====================
model = ResNet18_CBAM(num_classes=num_classes).to(device)
criterion = nn.CrossEntropyLoss()
epochs = 50print("开始使用带分阶段微调策略的ResNet18+CBAM模型进行训练...")
final_accuracy = train_staged_finetuning(model, criterion, train_loader, test_loader, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# 保存模型
torch.save(model.state_dict(), 'resnet18_cbam_custom.pth')
print("模型已保存为: resnet18_cbam_custom.pth")

使用设备: cpu
检测到 6 个类别
训练集大小: 900 张图片
测试集大小: 40 张图片
d:\anaconda\Lib\site-packages\torchvision\models\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.
  warnings.warn(
d:\anaconda\Lib\site-packages\torchvision\models\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet18_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet18_Weights.DEFAULT` to get the most up-to-date weights.
  warnings.warn(msg)
开始使用带分阶段微调策略的ResNet18+CBAM模型进行训练...

==================================================
🚀 **阶段 1:训练注意力模块和分类头**
==================================================

---> 解冻以下部分并设为可训练: ['cbam', 'backbone.fc']
Epoch 1/50 完成 | 耗时: 17.97s | 训练准确率: 19.89% | 测试准确率: 12.50%
Epoch 2/50 完成 | 耗时: 16.93s | 训练准确率: 31.22% | 测试准确率: 35.00%
Epoch 3/50 完成 | 耗时: 17.15s | 训练准确率: 35.56% | 测试准确率: 35.00%
Epoch 4/50 完成 | 耗时: 17.36s | 训练准确率: 37.11% | 测试准确率: 52.50%
Epoch 5/50 完成 | 耗时: 17.60s | 训练准确率: 37.56% | 测试准确率: 50.00%

==================================================
✈️ **阶段 2:解冻高层卷积层 (layer3, layer4)**
==================================================

---> 解冻以下部分并设为可训练: ['cbam', 'backbone.fc', 'backbone.layer3', 'backbone.layer4']
Epoch 6/50 完成 | 耗时: 19.17s | 训练准确率: 45.00% | 测试准确率: 60.00%
Epoch 7/50 完成 | 耗时: 19.26s | 训练准确率: 52.78% | 测试准确率: 67.50%
Epoch 8/50 完成 | 耗时: 19.21s | 训练准确率: 56.22% | 测试准确率: 62.50%
Epoch 9/50 完成 | 耗时: 19.33s | 训练准确率: 60.22% | 测试准确率: 72.50%
Epoch 10/50 完成 | 耗时: 19.32s | 训练准确率: 62.33% | 测试准确率: 72.50%
Epoch 11/50 完成 | 耗时: 19.34s | 训练准确率: 62.33% | 测试准确率: 70.00%
Epoch 12/50 完成 | 耗时: 29.18s | 训练准确率: 65.78% | 测试准确率: 72.50%
Epoch 13/50 完成 | 耗时: 37.93s | 训练准确率: 67.11% | 测试准确率: 72.50%
Epoch 14/50 完成 | 耗时: 36.39s | 训练准确率: 69.00% | 测试准确率: 75.00%
Epoch 15/50 完成 | 耗时: 37.31s | 训练准确率: 71.22% | 测试准确率: 72.50%
Epoch 16/50 完成 | 耗时: 36.51s | 训练准确率: 71.89% | 测试准确率: 72.50%
Epoch 17/50 完成 | 耗时: 24.59s | 训练准确率: 75.89% | 测试准确率: 67.50%
Epoch 18/50 完成 | 耗时: 36.65s | 训练准确率: 75.00% | 测试准确率: 70.00%
Epoch 19/50 完成 | 耗时: 20.12s | 训练准确率: 74.33% | 测试准确率: 67.50%
Epoch 20/50 完成 | 耗时: 19.23s | 训练准确率: 75.44% | 测试准确率: 70.00%

==================================================
🛰️ **阶段 3:解冻所有层,进行全局微调**
==================================================
Epoch 21/50 完成 | 耗时: 22.10s | 训练准确率: 76.78% | 测试准确率: 70.00%
Epoch 22/50 完成 | 耗时: 22.77s | 训练准确率: 78.33% | 测试准确率: 72.50%
Epoch 23/50 完成 | 耗时: 22.42s | 训练准确率: 78.67% | 测试准确率: 70.00%
Epoch 24/50 完成 | 耗时: 38.86s | 训练准确率: 77.33% | 测试准确率: 70.00%
Epoch 25/50 完成 | 耗时: 33.47s | 训练准确率: 80.11% | 测试准确率: 67.50%
Epoch 26/50 完成 | 耗时: 44.94s | 训练准确率: 78.11% | 测试准确率: 70.00%
Epoch 27/50 完成 | 耗时: 45.14s | 训练准确率: 78.56% | 测试准确率: 72.50%
Epoch 28/50 完成 | 耗时: 43.69s | 训练准确率: 79.22% | 测试准确率: 70.00%
Epoch 29/50 完成 | 耗时: 22.11s | 训练准确率: 78.67% | 测试准确率: 67.50%
Epoch 30/50 完成 | 耗时: 23.66s | 训练准确率: 81.11% | 测试准确率: 72.50%
Epoch 31/50 完成 | 耗时: 21.64s | 训练准确率: 77.22% | 测试准确率: 67.50%
Epoch 32/50 完成 | 耗时: 21.86s | 训练准确率: 79.33% | 测试准确率: 70.00%
Epoch 33/50 完成 | 耗时: 21.48s | 训练准确率: 83.89% | 测试准确率: 65.00%
Epoch 34/50 完成 | 耗时: 23.06s | 训练准确率: 81.44% | 测试准确率: 57.50%
Epoch 35/50 完成 | 耗时: 239.58s | 训练准确率: 79.89% | 测试准确率: 70.00%
Epoch 36/50 完成 | 耗时: 35.76s | 训练准确率: 79.11% | 测试准确率: 70.00%
Epoch 37/50 完成 | 耗时: 22.56s | 训练准确率: 83.00% | 测试准确率: 72.50%
Epoch 38/50 完成 | 耗时: 22.46s | 训练准确率: 82.00% | 测试准确率: 72.50%
Epoch 39/50 完成 | 耗时: 22.68s | 训练准确率: 81.78% | 测试准确率: 70.00%
Epoch 40/50 完成 | 耗时: 22.62s | 训练准确率: 84.44% | 测试准确率: 72.50%
Epoch 41/50 完成 | 耗时: 22.75s | 训练准确率: 80.22% | 测试准确率: 70.00%
Epoch 42/50 完成 | 耗时: 23.17s | 训练准确率: 82.56% | 测试准确率: 72.50%
Epoch 43/50 完成 | 耗时: 23.40s | 训练准确率: 81.78% | 测试准确率: 70.00%
Epoch 44/50 完成 | 耗时: 23.70s | 训练准确率: 81.44% | 测试准确率: 70.00%
Epoch 45/50 完成 | 耗时: 23.79s | 训练准确率: 81.11% | 测试准确率: 70.00%
Epoch 46/50 完成 | 耗时: 23.40s | 训练准确率: 81.56% | 测试准确率: 70.00%
Epoch 47/50 完成 | 耗时: 22.86s | 训练准确率: 83.22% | 测试准确率: 72.50%
Epoch 48/50 完成 | 耗时: 23.04s | 训练准确率: 81.89% | 测试准确率: 72.50%
Epoch 49/50 完成 | 耗时: 22.77s | 训练准确率: 84.11% | 测试准确率: 67.50%
Epoch 50/50 完成 | 耗时: 22.83s | 训练准确率: 83.00% | 测试准确率: 72.50%

训练完成! 开始绘制结果图表...

 @浙大疏锦行

http://www.dtcms.com/wzjs/238682.html

相关文章:

  • 牡丹江市建设行业协会网站天津网站seo设计
  • 办公空间设计网站百度移动应用
  • 深圳知名网站建设农产品网络营销方案
  • 哪家网站建设关键词排名客服
  • 做丰胸网站网站批量查询工具
  • 单位网站建设的优势短视频培训学校
  • 昆山规模的网站建设公司有哪些灯塔seo
  • php网站开发 pdfseo导航
  • 网站的风格设计包括哪些内容网站信息组织优化
  • 企业网站建设公司wp博客seo插件
  • 广东网站建设方便怎么制作百度网页
  • 做素材网站服务器广州百度推广排名优化
  • wordpress计数器优化设计电子课本下载
  • 自己建个购物网站网络口碑营销
  • 手机网站内容设计方案关键字搜索
  • 设计好看的美食网站有哪些淘宝关键词排名怎么查
  • 淘宝 客要推广网站怎么做怎么样在百度上免费推广
  • 做磨毛布内销哪个网站比较好互联网销售是做什么的
  • 购买东西网站怎么做网站维护合同
  • 做网站需要具备什么雅虎搜索引擎
  • 关于做网站公司周年大促销制作一个网站需要多少费用
  • 海外网站服务器网址网络推广人员
  • 绍兴网站优化国内十大搜索引擎排名
  • 做百度收录比较好的网站公司网络营销策划书
  • 网站被做跳转怎么办淘宝指数查询入口
  • 网站建设都用哪些软件怎么优化百度关键词
  • wordpress页面栏目搜索引擎优化论文
  • 做网站配什么电脑电脑学校培训
  • 唐山网站建设设计网站统计分析工具
  • 大连网站建设比较好的公司关键词