当前位置: 首页 > wzjs >正文

还有河北城乡和住房建设厅网站吗人民日报今日头条新闻

还有河北城乡和住房建设厅网站吗,人民日报今日头条新闻,通辽网站建设,南宁做网站1. 序列型DP(Sequence DP) ✅ 应用场景 单个或多个序列(数组/字符串),求最优子结构。 常见问题:最长递增子序列、最长公共子序列、回文子序列。 🧠 套路总结 单序列:dp[i] max(…

1. 序列型DP(Sequence DP)

✅ 应用场景
  • 单个或多个序列(数组/字符串),求最优子结构。

  • 常见问题:最长递增子序列、最长公共子序列、回文子序列。

🧠 套路总结
  • 单序列:dp[i] = max(dp[j]) + 1 (j < i 且 nums[j] < nums[i])

  • 双序列:dp[i][j] = max(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]+1) 依赖匹配关系

🧪 代表题目
1.1 最长递增/最长递减子序列
  • 题目举例

    • LeetCode 300. Longest Increasing Subsequence

    • LeetCode 674. Longest Continuous Increasing Subsequence

    • LeetCode 646. Maximum Length of Pair Chain

    • LeetCode 376. Wiggle Subsequence

1.2 最长公共子序列/子串
  • 题目举例

    • LeetCode 1143. Longest Common Subsequence

    • LeetCode 1092. Shortest Common Supersequence

    • LeetCode 718. Maximum Length of Repeated Subarray

1.3 回文子序列/子串
  • 题目举例

    • LeetCode 516. Longest Palindromic Subsequence

    • LeetCode 5. Longest Palindromic Substring

    • LeetCode 647. Palindromic Substrings

1.4 编辑距离和相似度
  • 题目举例

    • LeetCode 72. Edit Distance

    • LeetCode 583. Delete Operation for Two Strings

🧩 Go 模板
for i := 1; i < n; i++ {for j := 0; j < i; j++ {if condition {dp[i] = max(dp[i], dp[j] + val)}}
}

2. 背包型DP(Knapsack DP)

✅ 应用场景
  • 有物品、价值、容量的选择问题。

  • 子类型:0/1背包、完全背包、多重背包。

🧠 套路总结
// 0/1 背包(从大到小)
for i := 0; i < n; i++ {for j := cap; j >= weight[i]; j-- {dp[j] = max(dp[j], dp[j-weight[i]]+value[i])}
}// 完全背包(从小到大)
for i := 0; i < n; i++ {for j := weight[i]; j <= cap; j++ {dp[j] = max(dp[j], dp[j-weight[i]]+value[i])}
}
🧪 代表题目
2.1 0/1背包问题
  • 题目举例

    • LeetCode 416. Partition Equal Subset Sum

    • LeetCode 1049. Last Stone Weight II

    • LeetCode 474. Ones and Zeroes

2.2 完全背包问题
  • 题目举例

    • LeetCode 518. Coin Change II

    • LeetCode 322. Coin Change

    • LeetCode 139. Word Break

2.3 多重背包、分组背包等变形
  • 题目举例

    • LeetCode 698. Partition to K Equal Sum Subsets

    • LeetCode 474. Ones and Zeroes (也包含组背包思想)


3. 区间型DP(Interval DP)

✅ 应用场景
  • 合并区间、回文判断,求最优合并方案。

  • 状态:dp[i][j]表示区间[i,j]的最优值。

🧠 套路总结
for length := 2; length <= n; length++ {for i := 0; i <= n-length; i++ {j := i + length - 1for k := i; k < j; k++ {dp[i][j] = min(dp[i][j], dp[i][k]+dp[k+1][j]+cost[i][j])}}
}
🧪 代表题目
3.1 合并区间与括号相关
  • 题目举例

    • LeetCode 312. Burst Balloons

    • LeetCode 1000. Minimum Cost to Merge Stones

    • LeetCode 544. Output Contest Matches

3.2 回文串判定与划分
  • 题目举例

    • LeetCode 5. Longest Palindromic Substring

    • LeetCode 132. Palindrome Partitioning II

    • LeetCode 131. Palindrome Partitioning


4. 状态压缩DP(Bitmask DP)

✅ 应用场景
  • 元素子集、排列组合、旅行商问题等。

  • 状态数 ≈ 2^n(n ≤ 20)

🧠 套路总结
for mask := 0; mask < (1<<n); mask++ {for i := 0; i < n; i++ {if (mask&(1<<i)) == 0 {newMask := mask | (1 << i)dp[newMask] = min(dp[newMask], dp[mask]+cost[prev][i])}}
}
🧪 代表题目
4.1 旅行商(TSP)
  • 题目举例

    • LeetCode 847. Shortest Path Visiting All Nodes

    • LeetCode 1129. Shortest Path with Alternating Colors

4.2 子集划分和集合覆盖
  • 题目举例

    • LeetCode 698. Partition to K Equal Sum Subsets

    • LeetCode 1269. Number of Ways to Stay in the Same Place After Some Steps


5. 树形DP(Tree DP)

✅ 应用场景
  • 状态在树上自底向上传递,依赖子树结构。

🧠 套路总结
func dfs(node *TreeNode) (rob, notRob int) {if node == nil {return 0, 0}leftRob, leftNot := dfs(node.Left)rightRob, rightNot := dfs(node.Right)rob = node.Val + leftNot + rightNotnotRob = max(leftRob, leftNot) + max(rightRob, rightNot)return
}
🧪 代表题目
  • 5.1 树上选点问题
  • 题目举例

    • LeetCode 337. House Robber III

    • LeetCode 87. Scramble String (也用树形DP思想)

  • 题目举例

    • LeetCode 124. Binary Tree Maximum Path Sum

    • LeetCode 968. Binary Tree Cameras

  • 5.2 树上路径问题

6. 计数型DP(Counting DP)

✅ 应用场景
  • 统计路径、方案数、组合数。

🧠 套路总结
for i := 0; i < m; i++ {for j := 0; j < n; j++ {if i > 0 {dp[i][j] += dp[i-1][j]}if j > 0 {dp[i][j] += dp[i][j-1]}}
}
🧪 代表题目
  • 6.1 路径计数
  • 题目举例

    • LeetCode 62. Unique Paths

    • LeetCode 63. Unique Paths II

  • 6.2 组合计数
  • 题目举例

    • LeetCode 70. Climbing Stairs

    • LeetCode 639. Decode Ways II

  • 题目举例

    • LeetCode 377. Combination Sum IV

  • 6.3 排列计数
    • LeetCode 377. Combination Sum IV

7. 概率型DP(Probability DP)

✅ 应用场景
  • 求概率、期望值。

🧠 套路总结
for k := 1; k <= K; k++ {for i := 0; i < N; i++ {for j := 0; j < N; j++ {for _, dir := range dirs {ni, nj := i+dir[0], j+dir[1]if inBounds(ni, nj) {dp[k][i][j] += dp[k-1][ni][nj] / 8.0}}}}
}
🧪 代表题目
7.1 马尔可夫过程概率计算
  • 题目举例

    • LeetCode 688. Knight Probability in Chessboard

    • LeetCode 837. New 21 Game

7.2 期望值计算
  • 题目举例

    • LeetCode 470. Implement Rand10() Using Rand7()

✅ 8. 子串 / 子序列问题

多用于字符串匹配、编辑距离等

🔹 场景:

  • 最长公共子序列、子串

  • 编辑距离

  • 回文子序列

🔸 代表题目:

题号名称
1143Longest Common Subsequence
72Edit Distance
5Longest Palindromic Substring

📌 模板结构:

if s[i] == t[j] {dp[i][j] = dp[i-1][j-1] + 1
} else {dp[i][j] = max(dp[i-1][j], dp[i][j-1])
}

http://www.dtcms.com/wzjs/210937.html

相关文章:

  • 企业做可信网站认证的好处如何制作自己的公司网站
  • 深圳广告标识厂家seo sem是什么
  • 济南汇展做网站网站网络推广推广
  • 专业外贸网站制作价格百度搜索风云榜电视剧
  • 上海品划做网站谷歌seo引擎优化
  • 淄博建网站哪家好下载百度到桌面上
  • 做游戏奖金不被发现网站广州竞价外包
  • 贵阳网站建设包首页网络营销讲师
  • wordpress 邮件推送如何优化标题关键词
  • 徐家汇网站建青岛seo精灵
  • wordpress菜单注册seo排名软件免费
  • php可以做移动端网站如何进行网站宣传推广
  • wordpress如何开启多站点品牌如何推广
  • 商城网站建设如何适合小学生摘抄的新闻2022年
  • 邢台做移动网站公司电话号码谷歌优化怎么做
  • 广州做网站的微信营销案例
  • 网站建设摊销会计分录seo博客网站
  • 外贸英语学习网站企业文化培训
  • 外链吧seo运营是什么意思
  • 网站建设都需要什么技术人员小吃培训2000元学6项
  • 兰州网站建设与优化百度网盟推广怎么做
  • 网站导航设计欣赏优化网站seo公司
  • 东莞企业网站咨询seo主要是指优化
  • 莱芜建设网站高端网站建设哪个好
  • 重庆直播网站平台建设广州竞价托管公司
  • 学习如何做网站网站搜索排优化怎么做
  • 昆明企业网站制作创建个人网站的流程
  • 网站后台清除缓存在哪现在做网络推广好做吗
  • 网站推广优化平台b站引流推广
  • 淮南市招标投标信息网安阳seo