当前位置: 首页 > wzjs >正文

中企动力主要是做什么的连云港seo优化

中企动力主要是做什么的,连云港seo优化,网页版游戏平台,做营销型网站公司目录 一.Pipline与工具栈 二.硬件设备概况 三.GPU视频编解码框架 四.VPI编译使用实例 五. jetson_multimedia_api编译使用实例 一.Pipline与工具栈 二.硬件设备概况 三.GPU视频编解码框架 jetson设备目前不支持VPF框架,关于VPF的使用我在下节PC段使用X86进行安…

目录

一.Pipline与工具栈

二.硬件设备概况

三.GPU视频编解码框架

四.VPI编译使用实例

五. jetson_multimedia_api编译使用实例

一.Pipline与工具栈

二.硬件设备概况

三.GPU视频编解码框架

  1. jetson设备目前不支持VPF框架,关于VPF的使用我在下节PC段使用X86进行安装与演示
  2. jetson目前支持的GPU编解码框架为VPI和jetson_multimedia_api
    #1.主机端
    agx@ubuntu:~$ ls /usr/src/jetson_multimedia_api/
    argus  data  include  LEGAL  LICENSE  Makefile  README  samples  tools
    agx@ubuntu:~$ ls /opt/
    containerd/  genymobile/  nvidia/      ota_package/ todesk/
    agx@ubuntu:~$ ls /opt/nvidia/vpi2/
    bin  doc  etc  include  lib  lib64  samples  share#2.docker端
    agx@ubuntu:~$ docker images
    REPOSITORY                   TAG                  IMAGE ID       CREATED       SIZE
    nvcr.io/nvidia/l4t-pytorch   r35.2.1-pth2.0-py3   853b58c1dce6   2 years ago   11.7GB
    agx@ubuntu:~$ docker exec  -it nvpy bash
    root@7666a2ca87d3:/# ls /usr/src/jetson_multimedia_api/
    LEGAL  LICENSE  Makefile  README  argus  data  include  samples  tools
    root@7666a2ca87d3:/# ls /opt/nvidia/vpi2/
    bin  doc  etc  include  lib  lib64  samples  share
    

四.VPI编译使用实例

        1.运行结果

root@7666a2ca87d3:/opt/nvidia/vpi2# cd s
samples/ share/   
root@7666a2ca87d3:/opt/nvidia/vpi2# cd samples/
01-convolve_2d/           03-harris_corners/        05-benchmark/             07-fft/                   09-tnr/                   11-fisheye/               13-optflow_dense/         15-image_view/            17-template_matching/     assets/                   
02-stereo_disparity/      04-rescale/               06-klt_tracker/           08-cross_aarch64_l4t/     10-perspwarp/             12-optflow_lk/            14-background_subtractor/ 16-vpi_pytorch/           18-orb_feature_detector/  tutorial_blur/            
root@7666a2ca87d3:/opt/nvidia/vpi2# cd samples/01-convolve_2d/
root@7666a2ca87d3:/opt/nvidia/vpi2/samples/01-convolve_2d# python3 main.py --backend=cuda --input "/opt/nvidia/vpi2/share/backgrounds/NVIDIA_icon.png"
root@7666a2ca87d3:/opt/nvidia/vpi2/samples/01-convolve_2d# 

        2.源码 

import sys
import vpi
import numpy as np
from PIL import Image
from argparse import ArgumentParser# Parse command line arguments
parser = ArgumentParser()
parser.add_argument('--backend', choices=['cpu','cuda','pva'],default="cuda",help='Backend to be used for processing')parser.add_argument('--input',default="/opt/nvidia/vpi2/share/backgrounds/NVIDIA_icon.png",help='Image to be used as input')args = parser.parse_args();if args.backend == 'cpu':backend = vpi.Backend.CPU
elif args.backend == 'cuda':backend = vpi.Backend.CUDA
else:assert args.backend == 'pva'backend = vpi.Backend.PVA# Load input into a vpi.Image
try:input = vpi.asimage(np.asarray(Image.open(args.input)))
except IOError:sys.exit("Input file not found")
except:sys.exit("Error with input file")# Convert it to grayscale
input = input.convert(vpi.Format.U8, backend=vpi.Backend.CUDA)# Define a simple edge detection kernel
kernel = [[ 1, 0, -1],[ 0, 0,  0],[-1, 0, 1]]# Using the chosen backend,
with backend:# Run input through the convolution filteroutput = input.convolution(kernel, border=vpi.Border.ZERO)# Save result to disk
Image.fromarray(output.cpu()).save('edges_python'+str(sys.version_info[0])+'_'+args.backend+'.png')

         3.结果展示(上面用的是一个滤波)

五. jetson_multimedia_api编译使用实例

        1.cuda h264编码(bug警告,能编译通过·但是无法OSD,后续两个实验直接在jetson-dektop上面实验的,就行了)

root@ubuntu:/usr/src/jetson_multimedia_api/samples/03_video_cuda_enc# make clean
root@ubuntu:/usr/src/jetson_multimedia_api/samples/03_video_cuda_enc# make
Compiling: video_cuda_enc_csvparser.cpp
Compiling: video_cuda_enc_main.cpp
make[1]: 进入目录“/usr/src/jetson_multimedia_api/samples/common/classes”
Compiling: NvElementProfiler.cpp
Compiling: NvElement.cpp
Compiling: NvApplicationProfiler.cpp
Compiling: NvVideoDecoder.cpp
Compiling: NvJpegEncoder.cpp
Compiling: NvBuffer.cpp
Compiling: NvLogging.cpp
Compiling: NvEglRenderer.cpp
Compiling: NvUtils.cpp
Compiling: NvDrmRenderer.cpp
Compiling: NvJpegDecoder.cpp
Compiling: NvVideoEncoder.cpp
Compiling: NvV4l2ElementPlane.cpp
Compiling: NvBufSurface.cpp
Compiling: NvV4l2Element.cpp
make[1]: 离开目录“/usr/src/jetson_multimedia_api/samples/common/classes”
make[1]: 进入目录“/usr/src/jetson_multimedia_api/samples/common/algorithm/cuda”
Compiling: NvAnalysis.cu
Compiling: NvCudaProc.cpp
make[1]: 离开目录“/usr/src/jetson_multimedia_api/samples/common/algorithm/cuda”
Linking: video_cuda_enc
root@ubuntu:/usr/src/jetson_multimedia_api/samples/03_video_cuda_enc# ./video_cuda_enc ../../data/Video/sample_outdoor_car_1080p_10fps.yuv 1920 1080 H264 test.h264
段错误 (核心已转储)

        2. cuda h264解码

root@ubuntu:/usr/src/jetson_multimedia_api/samples/02_video_dec_cuda# ./video_dec_cuda ../../data/Video/sample_outdoor_car_1080p_10fps.h264 H264
Opening in BLOCKING MODE 
NvMMLiteOpen : Block : BlockType = 261 
NVMEDIA: Reading vendor.tegra.display-size : status: 6 
NvMMLiteBlockCreate : Block : BlockType = 261 
Starting decoder capture loop thread
Input file read complete
Video Resolution: 1920x1080
[INFO] (NvEglRenderer.cpp:110) <renderer0> Setting Screen width 1920 height 1080
Query and set capture successful
Exiting decoder capture loop thread
App run was successful

        3.cuda h264解码+tensorrt目标检测:

        GPU算法检测与结果缓存

root@ubuntu:/usr/src/jetson_multimedia_api/samples/02_video_dec_cuda# cd ../04_video_dec_trt/
root@ubuntu:/usr/src/jetson_multimedia_api/samples/04_video_dec_trt# ./video_dec_trt 2 ../../data/Video/sample_outdoor_car_1080p_10fps.h264  ../../data/Video/sample_outdoor_car_1080p_10fps.h264 H264 --trt-onnxmodel  ../../data/Model/resnet10/resnet10_dynamic_batch.onnx --trt-mode 0
set onnx modefile: ../../data/Model/resnet10/resnet10_dynamic_batch.onnx
Using cached TRT model
Deserialization required 13048 microseconds.
Total per-runner device persistent memory is 5632
Total per-runner host persistent memory is 45440
Allocated activation device memory of size 22138880
Opening in BLOCKING MODE 
NvMMLiteOpen : Block : BlockType = 261 
NVMEDIA: Reading vendor.tegra.display-size : status: 6 
NvMMLiteBlockCreate : Block : BlockType = 261 
Starting decoder capture loop thread
Input file read complete
Video Resolution: 1920x1080
Opening in BLOCKING MODE 
NvMMLiteOpen : Block : BlockType = 261 
NVMEDIA: Reading vendor.tegra.display-size : status: 6 
NvMMLiteBlockCreate : Block : BlockType = 261 
Resolution change successful
Starting decoder capture loop thread
Input file read complete
Video Resolution: 1920x1080
Resolution change successful
Time elapsed:1 ms per frame in past 100 frames
Time elapsed:1 ms per frame in past 100 frames
Time elapsed:1 ms per frame in past 100 frames
Time elapsed:1 ms per frame in past 100 frames
Time elapsed:1 ms per frame in past 100 frames
Time elapsed:1 ms per frame in past 100 frames

         CUDA-H264视频解码+OSD

root@ubuntu:/usr/src/jetson_multimedia_api/samples/02_video_dec_cuda# ./video_dec_cuda ../../data/Video/sample_outdoor_car_1080p_10fps.h264 H264 --bbox-file result0.txt 
ctx.osd_file_path:result0.txt
Opening in BLOCKING MODE 
NvMMLiteOpen : Block : BlockType = 261 
NVMEDIA: Reading vendor.tegra.display-size : status: 6 
NvMMLiteBlockCreate : Block : BlockType = 261 
Starting decoder capture loop thread
Input file read complete
Video Resolution: 1920x1080
[INFO] (NvEglRenderer.cpp:110) <renderer0> Setting Screen width 1920 height 1080
Query and set capture successful
Exiting decoder capture loop thread
App run was successful
root@ubuntu:/usr/src/jetson_multimedia_api/samples/02_video_dec_cuda# ls
Makefile  resuilt.txt  result0.txt  result1.txt  result.txt  videodec_csvparser.cpp  videodec_csvparser.o  video_dec_cuda  videodec.h  videodec_main.cpp  videodec_main.o
root@ubuntu:/usr/src/jetson_multimedia_api/samples/02_video_dec_cuda# ./video_dec_cuda ../../data/Video/sample_outdoor_car_1080p_10fps.h264 H264
Opening in BLOCKING MODE 
NvMMLiteOpen : Block : BlockType = 261 
NVMEDIA: Reading vendor.tegra.display-size : status: 6 
NvMMLiteBlockCreate : Block : BlockType = 261 
Starting decoder capture loop thread
Input file read complete
Video Resolution: 1920x1080
[INFO] (NvEglRenderer.cpp:110) <renderer0> Setting Screen width 1920 height 1080
Query and set capture successful

http://www.dtcms.com/wzjs/202879.html

相关文章:

  • 石河子规划建设局网站网络营销策划书步骤
  • 怎么做国外网站世界500强企业名单
  • 橙子建站有风险吗怎么上百度推广产品
  • 网站怎么做成二维码南宁seo排名优化
  • wordpress图片间隙重庆seo整站优化外包服务
  • 查看WordPress网站插件创建网站需要多少资金
  • 海口房产网站建设如何推广宣传一个品牌
  • 网站被屏蔽怎么访问企业网站建设专业服务
  • 手机访问网站建设中哪些行业适合做seo
  • 武汉城乡建设委员网站首页站长工具域名解析
  • dede织梦做的网站 栏目页有切换js 怎么循环子栏目 调子栏目长沙网站优化效果
  • 滕州住房和城乡建设局网站seo教程seo官网优化详细方法
  • 网站开发网站开发公司哪家好线上推广有哪些平台效果好
  • 16岁做分期网站自媒体发布平台
  • 石河子做网站百度最新秒收录方法2021
  • 宁波网站推广优化公司济宁seo推广
  • 还有网站吗网络优化的意义
  • 网站卖给做博彩的公司网站模板设计
  • 青海公司网站建设站长之家ip查询
  • 武冈企业建站宁波seo优化项目
  • wordpress插件安装教程视频上海搜索seo
  • 可做实名认证的网站网站快速排名服务
  • 做淘宝网站需要多大空间企业网页设计与推广
  • 北安网站设计站长工具高清
  • 做广告的公司搜索引擎优化的缺点包括
  • 网站建设商品的分类seo网站推广下载
  • 网络科技网站有哪些方面北京关键词排名推广
  • 做百度个人网站地推项目对接平台
  • 南昌商城网站设计零基础学什么技术好
  • dw cs4怎么做网站广告推广营销网站