当前位置: 首页 > wzjs >正文

巩义做网站汉狮公司推广网上国网

巩义做网站汉狮公司,推广网上国网,域名信息备案管理系统官网,开发游戏需要多少资金ResNet残差神经网络的模型结构定义(pytorch实现) ResNet‑34 ResNet‑34的实现思路。核心在于: 定义残差块(BasicBlock)用 _make_layer 方法堆叠多个残差块按照 ResNet‑34 的通道和层数配置来搭建网络 import torch…

ResNet残差神经网络的模型结构定义(pytorch实现)

ResNet‑34

在这里插入图片描述

ResNet‑34的实现思路。核心在于:

  1. 定义残差块(BasicBlock)
  2. _make_layer 方法堆叠多个残差块
  3. 按照 ResNet‑34 的通道和层数配置来搭建网络

import torch
import torch.nn as nn
import torch.nn.functional as Fclass BasicBlock(nn.Module):expansion = 1  # 对于 BasicBlock,输出通道 = base_channels * expansiondef __init__(self, in_channels, out_channels, stride=1):super().__init__()# 第一个 3×3 卷积self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3,stride=stride, padding=1, bias=False)self.bn1   = nn.BatchNorm2d(out_channels)# 第二个 3×3 卷积self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3,stride=1, padding=1, bias=False)self.bn2   = nn.BatchNorm2d(out_channels)# 如果输入输出通道或下采样不一致,则用 1×1 卷积做一下“shortcut”self.shortcut = nn.Sequential()if stride != 1 or in_channels != out_channels * BasicBlock.expansion:self.shortcut = nn.Sequential(nn.Conv2d(in_channels, out_channels * BasicBlock.expansion,kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(out_channels * BasicBlock.expansion))def forward(self, x):out = F.relu(self.bn1(self.conv1(x)))out = self.bn2(self.conv2(out))# 残差连接out += self.shortcut(x)return F.relu(out)class ResNet(nn.Module):def __init__(self, block, layers, num_classes=1000):"""block:       残差块类型(BasicBlock 或 Bottleneck)layers:      每个 stage 包含多少个 block,例如 [3, 4, 6, 3] 对应 ResNet‑34num_classes: 最后分类数"""super().__init__()self.in_channels = 64# Stem:7×7 conv + maxpoolself.conv1 = nn.Conv2d(3, 64, kernel_size=7,stride=2, padding=3, bias=False)self.bn1   = nn.BatchNorm2d(64)self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)# 四个 stage,通道分别是 [64,128,256,512]self.layer1 = self._make_layer(block, 64,  layers[0], stride=1)self.layer2 = self._make_layer(block, 128, layers[1], stride=2)self.layer3 = self._make_layer(block, 256, layers[2], stride=2)self.layer4 = self._make_layer(block, 512, layers[3], stride=2)# 全局平均池化 + 全连接self.avgpool = nn.AdaptiveAvgPool2d((1,1))self.fc      = nn.Linear(512 * block.expansion, num_classes)def _make_layer(self, block, out_channels, num_blocks, stride):"""构造一个 stage,由 num_blocks 个 block 组成。第一个 block 可能带 stride 下采样,其余 block stride=1。"""strides = [stride] + [1] * (num_blocks - 1)layers = []for s in strides:layers.append(block(self.in_channels, out_channels, stride=s))self.in_channels = out_channels * block.expansionreturn nn.Sequential(*layers)def forward(self, x):x = F.relu(self.bn1(self.conv1(x)))x = self.pool1(x)x = self.layer1(x)   # output size  /4x = self.layer2(x)   # output size  /8x = self.layer3(x)   # output size /16x = self.layer4(x)   # output size /32x = self.avgpool(x)  # [B, C, 1, 1]x = torch.flatten(x, 1)x = self.fc(x)return xdef resnet34(num_classes=1000):"""返回一个 ResNet-34 实例"""return ResNet(BasicBlock, [3, 4, 6, 3], num_classes)

关键点解析

  • BasicBlock

    • 两个连续的 3×3 卷积,均附带 BatchNorm 和 ReLU
    • 当通道数或步幅不匹配时,用 1×1 卷积对输入做一下线性变换,才能做元素相加
  • _make_layer

    • 每个 stage 第一个残差块如果要做下采样,则 stride=2;其余都保持 stride=1
    • layers 参数 [3,4,6,3] 精确对应了图中红、粉、灰、蓝四部分每层 block 的数量
  • 整体流程

    1. 7×7、stride=2 下采样 → 最大池化 →
    2. 四个 stage(通道 64→128→256→512,每段下采样一次)→
    3. 全局平均池化 → 全连接分类

这样就完整复现了图中右侧那张“34-layer residual”结构。你可以直接调用 resnet34(),并像下面这样测试一下输出形状:

if __name__ == "__main__":model = resnet34(num_classes=1000)x = torch.randn(8, 3, 224, 224)y = model(x)print(y.shape)   # torch.Size([8, 1000])

ResNet‑50

PyTorch 实现 ResNet‑50 。它与 ResNet‑34 唯一不同之处在于使用了 Bottleneck 模块,并且每个 stage 的 block 数量依次为 [3, 4, 6, 3](同 ResNet‑34),但每个 block 内部由三个卷积层组成,expansion 值为 4。

import torch
import torch.nn as nn
import torch.nn.functional as Fclass Bottleneck(nn.Module):# 输出通道 = base_channels * expansionexpansion = 4def __init__(self, in_channels, base_channels, stride=1):super().__init__()# 1×1 降维self.conv1 = nn.Conv2d(in_channels, base_channels, kernel_size=1,bias=False)self.bn1   = nn.BatchNorm2d(base_channels)# 3×3 卷积(可能下采样)self.conv2 = nn.Conv2d(base_channels, base_channels, kernel_size=3,stride=stride, padding=1, bias=False)self.bn2   = nn.BatchNorm2d(base_channels)# 1×1 升维self.conv3 = nn.Conv2d(base_channels, base_channels * Bottleneck.expansion,kernel_size=1, bias=False)self.bn3   = nn.BatchNorm2d(base_channels * Bottleneck.expansion)# shortcut 分支self.shortcut = nn.Sequential()if stride != 1 or in_channels != base_channels * Bottleneck.expansion:self.shortcut = nn.Sequential(nn.Conv2d(in_channels, base_channels * Bottleneck.expansion,kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(base_channels * Bottleneck.expansion))def forward(self, x):out = F.relu(self.bn1(self.conv1(x)))out = F.relu(self.bn2(self.conv2(out)))out = self.bn3(self.conv3(out))out += self.shortcut(x)return F.relu(out)class ResNet(nn.Module):def __init__(self, block, layers, num_classes=1000):super().__init__()self.in_channels = 64# Stem:7×7 conv + maxpoolself.conv1 = nn.Conv2d(3, 64, kernel_size=7,stride=2, padding=3, bias=False)self.bn1   = nn.BatchNorm2d(64)self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)# 四个 stageself.layer1 = self._make_layer(block,  64, layers[0], stride=1)self.layer2 = self._make_layer(block, 128, layers[1], stride=2)self.layer3 = self._make_layer(block, 256, layers[2], stride=2)self.layer4 = self._make_layer(block, 512, layers[3], stride=2)# 池化 + 全连接self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.fc      = nn.Linear(512 * block.expansion, num_classes)def _make_layer(self, block, base_channels, num_blocks, stride):"""构造一个 stage,由 num_blocks 个 block 组成。第一个 block 可能下采样(stride>1),其余保持 stride=1。"""strides = [stride] + [1] * (num_blocks - 1)layers = []for s in strides:layers.append(block(self.in_channels, base_channels, stride=s))self.in_channels = base_channels * block.expansionreturn nn.Sequential(*layers)def forward(self, x):x = F.relu(self.bn1(self.conv1(x)))x = self.pool1(x)x = self.layer1(x)   # /4x = self.layer2(x)   # /8x = self.layer3(x)   # /16x = self.layer4(x)   # /32x = self.avgpool(x)  # [B, C, 1, 1]x = torch.flatten(x, 1)x = self.fc(x)return xdef resnet50(num_classes=1000):"""返回一个 ResNet-50 实例"""return ResNet(Bottleneck, [3, 4, 6, 3], num_classes)# 简单测试
if __name__ == "__main__":model = resnet50(num_classes=1000)x = torch.randn(4, 3, 224, 224)y = model(x)print(y.shape)  # -> torch.Size([4, 1000])

说明

  • Bottleneck 模块:三个卷积层依次为 1×1 → 3×3 → 1×1,最后一个 1×1 用来恢复维度(乘以 expansion=4)。
  • shortcut 分支:当需下采样(stride=2)或输入输出维度不一致时,使用 1×1 卷积对齐后相加。
  • layers 参数 [3,4,6,3]:分别对应四个 stage 中 Bottleneck block 的个数。

这样就完成了 ResNet‑50 的全结构定义。你可以直接调用 resnet50() 并将其与预训练权重或自己的数据集一起使用。


参考:Kaiming He 等人,Deep Residual Learning for Image Recognition (CVPR 2016).

http://www.dtcms.com/wzjs/200189.html

相关文章:

  • 如何建设一个门户网站中山谷歌推广
  • 企业网站宽度南京百度seo排名
  • 济南手机网站建设专业定制免费做网站网站的软件
  • 葫芦岛网站建设青岛网站排名推广
  • shopify做旅游网站百度官网首页登录
  • 58同城网站建设安卓aso优化
  • 句容做网站唐山建站公司模板
  • wordpress+4.2.4中文什么是白帽seo
  • div css网站布局案...谷歌seo一个月费用需要2万吗
  • 衡阳网站优化方案临沂百度联系方式
  • 海外代购网站临沂做网站的公司
  • 手机网站自助建设电商运营一天都干啥
  • 怎样添加网站图标网站设计公司报价
  • vs做网站加背景长沙seo关键词排名优化
  • 现在做网站开发营销方案模板
  • 拼多多官网东莞网络排名优化
  • 做网站到内容填充需要多久免费网站搭建平台
  • 建构网站西安百度云
  • 个人养老金制度具体内容湖南竞价优化专业公司
  • 手机维护 Wordpress百度手机端排名如何优化
  • 中国公路建设行业协会网站这么上不免费顶级域名申请网站
  • 大岭山建设网站万网app下载
  • 手机下载工具appseo咨询服务价格
  • dream8网站建设及设计合肥seo快排扣费
  • 网站的标题标签一般是写在公司网络推广该怎么做
  • 长春网站建设百度店铺注册
  • 网站建设那种语言好太原百度快速优化
  • 东莞疫情最新消息2021怎样优化网站关键词排名靠前
  • 青海网站建设策划seo常用的工具
  • 怎么做自己的网站教程企业宣传