当前位置: 首页 > wzjs >正文

潍坊智能建站模板seo优化网络

潍坊智能建站模板,seo优化网络,广州网站建设网站优化推广,电商网站适合做响应式布局吗来源 计算几何基本模板(二维) 目录 基本设置点 向量 Point(Vector)点积(数量积、内积)向量积,叉积两点间距离向量的模单位向量两向量的夹角判断点在直线的哪边逆转角 线 直线表达式Line判断…

来源

计算几何基本模板(二维)

目录

  • 基本设置
  • 点 + 向量
    • Point(Vector)
    • 点积(数量积、内积)
    • 向量积,叉积
    • 两点间距离
    • 向量的模
    • 单位向量
    • 两向量的夹角
    • 判断点在直线的哪边
    • 逆转角
  • 线
    • 直线表达式
    • Line
    • 判断三点共线
    • 点到直线的距离
    • 点到线段的距离
    • 判断点是否在线段上
    • 判断直线与线段是否相交
    • 判断两线段是否相交
    • 判断两直线平行
    • 求两直线交点
  • 多边形
    • 三角形面积
    • 三角形四心
    • 正弦定理 & 余弦定理
    • 正多边形性质
    • 求多边形面积
    • 判断点在多边形内
    • 判断凸多边形
    • Circle
    • 扇形面积
    • 点与圆位置关系
    • 直线与圆位置关系
    • 直线与圆交点
    • 圆与圆位置关系
    • 圆与圆交点
    • 求圆的切点
    • 三角形外接圆
    • 三角形内切圆
  • 网格
    • 线段整点个数
    • 多边形边整点个数
    • 多边形内整点个数
  • 极角排序
  • 凸包算法
  • 最小圆覆盖
  • 圆的面积并
  • 圆与多边形面积交
  • 自适应辛普森积分
  • 平面最近点对

基本设置

  • 使用long double提高精度
  • 定义常数eps=1e-8PI=acos(-1.0)
  • 实现sgn()函数处理浮点数精度判断

点 + 向量

Point(Vector)

struct Point { /*...*/ };
  • 包含坐标(x,y)和运算符重载

点积(Dot)

A ⃗ ⋅ B ⃗ = ∣ A ∣ ∣ B ∣ cos ⁡ θ \vec{A} \cdot \vec{B} = |A||B|\cos\theta A B =A∣∣Bcosθ

double operator*(Vector &A, Vector &B);

叉积(Cross)

A ⃗ × B ⃗ = ∣ A ∣ ∣ B ∣ sin ⁡ θ \vec{A} \times \vec{B} = |A||B|\sin\theta A ×B =A∣∣Bsinθ

double operator^(Vector &A, Vector &B);

两点间距离

d i s t ( A , B ) = ( A . x − B . x ) 2 + ( A . y − B . y ) 2 dist(A,B) = \sqrt{(A.x-B.x)^2 + (A.y-B.y)^2} dist(A,B)=(A.xB.x)2+(A.yB.y)2

向量模长

∣ A ∣ = A . x 2 + A . y 2 |A| = \sqrt{A.x^2 + A.y^2} A=A.x2+A.y2

单位向量

n o r m ( A ) = A ∣ A ∣ norm(A) = \frac{A}{|A|} norm(A)=AA

向量夹角

θ = arccos ⁡ ( A ⋅ B ∣ A ∣ ∣ B ∣ ) \theta = \arccos(\frac{A \cdot B}{|A||B|}) θ=arccos(A∣∣BAB)

点关于直线的位置判断

  • 使用叉积判断点在线段的左右关系

向量旋转

A ⃗ ′ = ( x cos ⁡ θ − y sin ⁡ θ , x sin ⁡ θ + y cos ⁡ θ ) \vec{A}' = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta) A =(xcosθysinθ,xsinθ+ycosθ)

线

直线表达式

  • 一般式: A x + B y + C = 0 Ax+By+C=0 Ax+By+C=0
  • 点向式: P ⃗ = P 0 + t d ⃗ \vec{P} = P_0 + t\vec{d} P =P0+td

Line结构体

struct Line { Point s, e; };

三点共线判断

( B − A ) × ( C − B ) = 0 (B-A) \times (C-B) = 0 (BA)×(CB)=0

点到直线距离

d = ∣ A B ⃗ × A P ⃗ ∣ ∣ A B ∣ d = \frac{|\vec{AB} \times \vec{AP}|}{|AB|} d=ABAB ×AP

点到线段距离

  • 分三种情况:垂直投影在线段内/外

点在线段上判断

  • 通过点积和叉积综合判断

直线与线段相交判断

  • 利用叉积符号判断端点位置

线段相交判断

  1. 快速排斥试验
  2. 跨立试验

直线交点求解

t = ( C D ⃗ × C A ⃗ ) ( C D ⃗ × A B ⃗ ) t = \frac{(\vec{CD} \times \vec{CA})}{(\vec{CD} \times \vec{AB})} t=(CD ×AB )(CD ×CA )

多边形

三角形面积

  • 海伦公式
  • 叉积公式: 1 2 ∣ A B ⃗ × A C ⃗ ∣ \frac{1}{2}|\vec{AB} \times \vec{AC}| 21AB ×AC

多边形面积

  • 鞋带定理: 1 2 ∣ ∑ i = 0 n − 1 ( P i × P i + 1 ) ∣ \frac{1}{2}|\sum_{i=0}^{n-1}(P_i \times P_{i+1})| 21i=0n1(Pi×Pi+1)

点在多边形内判断

  • 射线法统计交点奇偶性
  • 凸多边形方向法

凸包求解(Andrew算法)

  1. 按坐标排序
  2. 维护上下凸壳

圆与点位置关系

  • 计算点到圆心距离与半径比较

直线与圆相交

  • 代数法解方程组求交点

圆与圆相交

  • 计算圆心距与半径关系

最小圆覆盖

  • 随机增量法逐步扩展

网格相关

线段整点计数

  • 利用GCD计算格点数

皮克定理

S = I + B 2 − 1 S = I + \frac{B}{2} - 1 S=I+2B1

高级算法

极角排序

  • 分象限处理,避免浮点误差

自适应辛普森积分

  • 自动划分区间积分

平面最近点对

  • 分治法结合归并排序
http://www.dtcms.com/wzjs/197201.html

相关文章:

  • 网站建设交接表怎么把广告发到各大平台
  • 台州自助建站elo机制
  • 有没有做淘宝的网站品牌广告策划方案
  • flash 网站建设手机百度高级搜索入口在哪里
  • 郑州高校网站建设服务公司网络推广主要工作内容
  • 可以做微商的网站电商培训机构排名前十
  • 做网站的总要求上门百度seo怎么提高排名
  • 广州市荔湾区住房建设部官方网站新手怎么做电商运营
  • 广州海珠做网站的公司百度seo代理
  • 做网站视频教程百度账号登陆入口
  • 做网站每年需要购买域名吗b2b平台运营模式
  • 网站备案信息代码百度学术官网登录入口
  • 怎样做服装厂的企业网站模版站长工具关键词挖掘
  • 免备案网站制作5188关键词挖掘工具
  • 展厅设计公司网站数据分析师就业前景
  • 如何做网站效果图短视频剪辑培训班速成
  • 专业移动网站建设外贸全网营销推广
  • 界面设计最好的网站百度平台商家联系方式
  • 企业网站被黑后如何处理b2b电子商务网站
  • 秀洲区建设中心小学网站学生个人网页设计模板
  • wap企业网站网络推广计划书
  • 网页制作图片大小代码广东百度seo
  • 什么是网站流量优化seo网课培训
  • 最早做淘宝客的网站深圳靠谱网站建设公司
  • 番禺网站推广公司seo入门教程网盘
  • 网站建设进度总结爱站关键词搜索
  • 政府网站建设 讲话爱站seo综合查询
  • 做外贸卖小商品是哪个网站长春seo结算
  • 徐州市中心做网站的公司招聘网络品牌推广
  • 虚拟商品自动发货网站搭建教程网站推广软件下载