当前位置: 首页 > wzjs >正文

专门做调查问卷的网站百度推广优化技巧

专门做调查问卷的网站,百度推广优化技巧,大数据培训包就业靠谱吗,西安网站制作公司机器学习(Machine Learning) 简要声明 基于吴恩达教授(Andrew Ng)课程视频 BiliBili课程资源 文章目录 机器学习(Machine Learning)简要声明 三、特征工程与多项式回归(一)特征工程:从数据中发…

机器学习(Machine Learning)

简要声明

基于吴恩达教授(Andrew Ng)课程视频
BiliBili课程资源


文章目录

  • 机器学习(Machine Learning)
    • 简要声明
  • 三、特征工程与多项式回归
    • (一)特征工程:从数据中发现隐藏规律
      • 1.1 特征工程的核心思想
      • 1.2 特征工程的三大范式
    • (二)多项式回归:非线性关系的建模利器
      • 2.1 多项式回归原理
    • (三)特征选择:在复杂性与效果间寻找平衡
      • 3.1 非线性特征设计


一、特征缩放(Feature Scaling)

二、梯度下降收敛性检验与学习率选择

三、特征工程与多项式回归

(一)特征工程:从数据中发现隐藏规律

1.1 特征工程的核心思想

通过创造性组合原始特征,将领域知识注入机器学习模型。如图1所示,房屋价格预测中:

原始特征 : x 1 ( frontage ) , x 2 ( depth ) 新特征 : x 3 = x 1 × x 2 = area 模型公式 : f w , b ( x ) = w 1 x 1 + w 2 x 2 + w 3 x 3 + b \begin{aligned} \text{原始特征} & : x_1(\text{frontage}),\ x_2(\text{depth}) \\ \text{新特征} & : x_3 = x_1 \times x_2 = \text{area} \\ 模型公式 & : f_{\mathbf{w},b}(\mathbf{x}) = w_1x_1 + w_2x_2 + w_3x_3 + b \end{aligned} 原始特征新特征模型公式:x1(frontage), x2(depth):x3=x1×x2=area:fw,b(x)=w1x1+w2x2+w3x3+b

1.2 特征工程的三大范式

方法类型数学表达应用场景
数值转换 x ′ = log ⁡ ( x ) x' = \log(x) x=log(x)处理长尾分布数据
组合运算 x 3 = x 1 × x 2 x_3 = x_1 \times x_2 x3=x1×x2揭示交互效应

特征工程有无的对比
在这里插入图片描述

在这里插入图片描述


(二)多项式回归:非线性关系的建模利器

2.1 多项式回归原理

通过引入高次项扩展线性模型:

f w , b ( x ) = w 1 x + w 2 x 2 + w 3 x 3 + b f_{w,b}(x) = w_1 x + w_2 x^2 + w_3 x^3 + b fw,b(x)=w1x+w2x2+w3x3+b

image2.jpg

不同阶数多项式拟合效果


(三)特征选择:在复杂性与效果间寻找平衡

3.1 非线性特征设计

如图所示,通过引入平方根项增强模型灵活性:

f w , b ( x ) = w 1 x + w 2 x + b f_{w,b}(x) = w_1 x + w_2 \sqrt{x} + b fw,b(x)=w1x+w2x +b
在这里插入图片描述

混合特征设计的拟合效果

x = np.arange(0,20,1)
y = x**2X = np.c_[x, x**2, x**3]
X = zscore_normalize_features(X) model_w, model_b = run_gradient_descent_feng(X, y, iterations=100000, alpha=1e-1)plt.scatter(x, y, marker='x', c='r', label="Actual Value"); plt.title("Normalized x x**2, x**3 feature")
plt.plot(x,X@model_w + model_b, label="Predicted Value"); plt.xlabel("x"); plt.ylabel("y"); plt.legend(); plt.show()
Iteration         0, Cost: 9.42147e+03
Iteration     10000, Cost: 3.90938e-01
Iteration     20000, Cost: 2.78389e-02
Iteration     30000, Cost: 1.98242e-03
Iteration     40000, Cost: 1.41169e-04
Iteration     50000, Cost: 1.00527e-05
Iteration     60000, Cost: 7.15855e-07
Iteration     70000, Cost: 5.09763e-08
Iteration     80000, Cost: 3.63004e-09
Iteration     90000, Cost: 2.58497e-10
w,b found by gradient descent: w: [5.27e-05 1.13e+02 8.43e-05], b: 123.5000

在这里插入图片描述

通过合理运用特征工程与多项式回归,我们能够将预测误差降低,同时保持较好的模型可解释性。


end_Linear Regression

http://www.dtcms.com/wzjs/194464.html

相关文章:

  • 做网站公司高端百度最新版下载
  • 毕业设计代做哪个网站好百度一下百度搜索百度一下
  • 信誉好的合肥网站建设最新国内新闻50条简短
  • 网上做彩票的网站是真的么十大最靠谱培训机构
  • 关于加强网站建设与管理的通知找客户资源的软件
  • 怎样给网站做一张背景广州新闻发布
  • 做暧嗳xo小视频免费网站建站公司网站建设
  • 今日石家庄最新疫情最新消息优化问题
  • 做外贸网站买海外域名站长网站
  • 湖北seo网站设计南京谷歌seo
  • 建设自己的网站怎么做seo网站优化收藏
  • 日本韩国双双出线seo专业培训课程
  • 苏州做网站公互联网营销师考试题及答案
  • 电话做网站的推广网站推广该怎么做
  • 怎样做网站推熊猫关键词工具
  • 成品网站货源1277seo网站优化培训找哪些
  • wordpress+chrome+扩展石景山区百科seo
  • 珠海网站优化推广发帖网站
  • 娄底网站建设最新军事新闻
  • iis7网站绑定域名760关键词排名查询
  • 微友说是做网站维护让帮忙投注邯郸百度推广公司
  • 网站 改域名二维码推广赚佣金平台
  • python3.5 做网站网络营销的基本方法
  • 北京h5网站建设公司重庆seo海洋qq
  • 摄影网站网络促销方式app推广方案范例
  • 如何在微信上做广告关键词优化怎么优化
  • 狮岭做网站比较好的网站建设网站
  • 潍坊网站建设技术外包国外搜索引擎排行榜
  • 搜索引擎不友好的网站特征南宁seo优势
  • 网站怎么备案在哪里搜索引擎大全网址