当前位置: 首页 > wzjs >正文

如何给网站做备份手机地图app下载安装

如何给网站做备份,手机地图app下载安装,wordpress 知更鸟 公告,wordpress播放网盘视频数据增强和转换 固定转换随机转换概率控制的转换 固定转换 边缘补充像素(Pad)尺寸变换(Resize)中心截取(CenterCrop)顶角及中心截取(FiveCrop)尺灰度变换(GrayScale) 概率控制的转换 随机垂直翻转(RandomVerticalFlip)随机应用(RandomApply) # -*- coding: utf-8 -*- fro…

数据增强和转换

  • 固定转换
  • 随机转换
  • 概率控制的转换

固定转换

  • 边缘补充像素(Pad)
  • 尺寸变换(Resize)
  • 中心截取(CenterCrop)
  • 顶角及中心截取(FiveCrop)
  • 尺灰度变换(GrayScale)

概率控制的转换

  • 随机垂直翻转(RandomVerticalFlip)
  • 随机应用(RandomApply)
# -*- coding: utf-8 -*-
from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
import torchvision.transforms as Tplt.rcParams["savefig.bbox"] = 'tight'
orig_img = Image.open('images.jpg')
torch.manual_seed(0)def plot(imgs, title, with_orig=True, row_title=None, **imshow_kwargs):if not isinstance(imgs[0], list):imgs = [imgs]num_rows = len(imgs)num_cols = len(imgs[0]) + with_origfig, axs = plt.subplots(nrows=num_rows, ncols=num_cols, squeeze=False)plt.title(title)for row_idx, row in enumerate(imgs):row = [orig_img] + row if with_orig else rowfor col_idx, img in enumerate(row):ax = axs[row_idx, col_idx]ax.imshow(np.asarray(img), **imshow_kwargs)ax.set(xticklabels=[], yticklabels=[], xticks=[], yticks=[])if with_orig:axs[0, 0].set(title='Original image')axs[0, 0].title.set_size(8)if row_title is not None:for row_idx in range(num_rows):axs[row_idx, 0].set(ylabel=row_title[row_idx])plt.tight_layout()# 边缘补充
padded_imgs = [T.Pad(padding=padding)(orig_img) for padding in (3, 10, 30, 50)]
plot(padded_imgs, "T.pad")# 尺寸变换
resized_imgs = [T.Resize(size=size)(orig_img) for size in (30, 50, 100, orig_img.size)]
plot(resized_imgs, title='Resize')# 中心截取
center_crops = [T.CenterCrop(size=size)(orig_img) for size in (30, 50, 100, orig_img.size)]
plot(center_crops, title='CenterCrop')# 四角及中间截取
(top_left, top_right, bottom_left, bottom_right, center) = T.FiveCrop(size=(100, 100))(orig_img)
plot([top_left, top_right, bottom_left, bottom_right, center], title='FiveCrop')# 灰度变换
gray_img = T.Grayscale()(orig_img)
plot([gray_img], cmap='gray', title='Grayscale')# 颜色抖动转换
jitter = T.ColorJitter(brightness=.5, hue=.3)
jitted_imgs = [jitter(orig_img) for _ in range(4)]
plot(jitted_imgs, title='ColorJitter')# 高斯模糊
blurrer = T.GaussianBlur(kernel_size=(5, 9), sigma=(0.1, 5))
blurred_imgs = [blurrer(orig_img) for _ in range(4)]
plot(blurred_imgs, title='GaussianBlur')# 随机透视变换
perspective_transformer = T.RandomPerspective(distortion_scale=0.6, p=1.0)
perspective_imgs = [perspective_transformer(orig_img) for _ in range(4)]
plot(perspective_imgs, title='RandomPerspective')# 随机旋转
rotater = T.RandomRotation(degrees=(0, 180))
rotated_imgs = [rotater(orig_img) for _ in range(4)]
plot(rotated_imgs, title='RandomRotation')# 随机仿射变换
affine_transfomer = T.RandomAffine(degrees=(30, 70), translate=(0.1, 0.3), scale=(0.5, 0.75))
affine_imgs = [affine_transfomer(orig_img) for _ in range(4)]
plot(affine_imgs, title='RandomAffine')# 弹性变换
elastic_transformer = T.ElasticTransform(alpha=250.0)
transformed_imgs = [elastic_transformer(orig_img) for _ in range(2)]
plot(transformed_imgs, title='ElasticTransform')# 随机裁剪
cropper = T.RandomCrop(size=(128, 128))
crops = [cropper(orig_img) for _ in range(4)]
plot(crops, title='RandomCrop')# 随机缩放裁剪
resize_cropper = T.RandomResizedCrop(size=(32, 32))
resized_crops = [resize_cropper(orig_img) for _ in range(4)]
plot(resized_crops, title='RandomResizedCrop')# 随机颜色翻转
inverter = T.RandomInvert()
invertered_imgs = [inverter(orig_img) for _ in range(4)]
plot(invertered_imgs, title='RandomInvert')# 随机海报化
posterizer = T.RandomPosterize(bits=2)
posterized_imgs = [posterizer(orig_img) for _ in range(4)]
plot(posterized_imgs, title='RandomPosterize')# 随机调节锐利度
sharpness_adjuster = T.RandomAdjustSharpness(sharpness_factor=2)
sharpened_imgs = [sharpness_adjuster(orig_img) for _ in range(4)]
plot(sharpened_imgs, title='RandomAdjustSharpness')# 随机调节对比度
autocontraster = T.RandomAutocontrast()
autocontrasted_imgs = [autocontraster(orig_img) for _ in range(4)]
plot(autocontrasted_imgs, title='RandomAutocontrast')# 随机直方图均衡
equalizer = T.RandomEqualize()
equalized_imgs = [equalizer(orig_img) for _ in range(4)]
plot(equalized_imgs, title='RandomEqualize')augmenter = T.RandAugment()
imgs = [augmenter(orig_img) for _ in range(4)]
plot(imgs, title='RandAugment')# 随机垂直翻转
hflipper = T.RandomHorizontalFlip(p=0.5)
transformed_imgs = [hflipper(orig_img) for _ in range(4)]
plot(transformed_imgs, title='RandomHorizontalFlip')# 随机水平翻转
vflipper = T.RandomVerticalFlip(p=0.5)
transformed_imgs = [vflipper(orig_img) for _ in range(4)]
plot(transformed_imgs, title='RandomVerticalFlip')# 随机应用
applier = T.RandomApply(transforms=[T.RandomCrop(size=(64, 64))], p=0.5)
transformed_imgs = [applier(orig_img) for _ in range(4)]
plot(transformed_imgs, title='RandomApply')plt.show()

综合案例

# -*- coding: utf-8 -*-
import os
import cv2 as cv
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np
from torchvision import transforms
from torch.nn import Sequentialtransform = Sequential(  # 生成一个一系列的操作transforms.GaussianBlur(kernel_size=(5, 9), sigma=(0.1, 5)),transforms.RandomVerticalFlip(p=0.5),transforms.RandomHorizontalFlip(p=0.2)
)class MyDataset(Dataset):def __init__(self):root_data = "dataset"self.file_name_list = []for root, dirs, files in os.walk(root_data):for file_i in files:file_i_full_path = os.path.join(root, file_i)self.file_name_list.append(file_i_full_path)def __len__(self):return len(self.file_name_list)def __getitem__(self, item):file_i_loc = self.file_name_list[item]image_i = cv.imread(file_i_loc)image_i = cv.resize(image_i, dsize=(256, 256))image_i = np.transpose(image_i, (2, 0, 1))image_i_tensor = torch.from_numpy(image_i)image_i_tensor = transform(image_i_tensor)file_i_loc_info = file_i_loc.split('\\')file_i_loc_info[0] = new_rootnew_file_i_loc = os.path.join(file_i_loc_info[0], file_i_loc_info[1], file_i_loc_info[2])return image_i_tensor, new_file_i_locif __name__ == '__main__':new_root = 'my_new_dataset'my_dataset = MyDataset()dataloader = DataLoader(my_dataset)for x_i, loc_i in dataloader:x_i=x_i.view(3,256,256)loc_info = loc_i[0].split('\\')file_dir = os.path.join(loc_info[0], loc_info[1])print(file_dir)if os.path.isdir(file_dir):passelse:os.makedirs(file_dir)image = transforms.ToPILImage()(x_i)image.save(loc_i[0])

http://www.dtcms.com/wzjs/173717.html

相关文章:

  • 19年做哪个网站致富网页设计培训
  • 用php制作动态网站微信推广文案
  • 低面效果在哪个网站做网站排名优化工具
  • 网站建设的网络公长沙网站建站模板
  • 网上书城网站开发外文参考文献电商软文范例300字
  • 东莞凤岗云南优化公司
  • 卖东西的网站怎么建设天津seo培训机构
  • 河北斯皮尔网站建设线下推广有哪几种渠道
  • wordpress 最好的编辑器百度seo效果怎么样
  • 网站开发合同审查要点上海搜索关键词排名
  • 建网站怎么弄企业邮箱格式
  • 辽宁大连网站建设全网万能搜索引擎
  • 最大源码网站西安百度推广客服电话多少
  • 小红书推广网站关键词搜索优化公司
  • 朱能源做网站杭州seo代理公司
  • 这样建立自己的网站关键词优化的技巧
  • 厦门 网站建设企业邮箱软文写作范文500字
  • 网站建设员性质seo优化网站的注意事项
  • 广州信息网seo推广排名平台有哪些
  • 网站 后台 java石家庄网站建设seo
  • 创新的南昌网站设计苏州网站维护
  • 完善幼儿园网站建设seo网站优化培训多少价格
  • wordpress网站访问验证码常州百度推广代理公司
  • 社区类网站有哪些成都网站建设方案优化
  • 高新区区建设局网站竞价托管 微竞价
  • 自己搭建个人网站搜索引擎营销推广
  • 做服装行业网站全能搜
  • 做视频找素材的网站有哪些软文营销软文推广
  • 资阳网站建设seo索引擎优化
  • 西安php网站开发培训班电商运营推广怎么做