当前位置: 首页 > wzjs >正文

济南软件制作seo零基础视频教程

济南软件制作,seo零基础视频教程,怎么找人做动漫视频网站,台州seo网站建设费用在第3章讨论过的并行归约问题 5.3.1 使用共享内存进行并行归约 reduceGmem – 使用全局内存作为基准 reduceSmem – 使用共享内存 #include <cuda_runtime.h> #include <stdio.h> #include "../common/common.h" #include <iostream>#define DIM…

在第3章讨论过的并行归约问题

5.3.1 使用共享内存进行并行归约
reduceGmem – 使用全局内存作为基准
reduceSmem – 使用共享内存

#include <cuda_runtime.h>
#include <stdio.h>
#include "../common/common.h"
#include <iostream>#define DIM 128int recursiveReduce(int *data, int const size){if (size == 1) return data[0];int const stride = size /2;for (int i = 0; i < stride; i ++){data[i] += data[i + stride];}return recursiveReduce( data, stride);
}__global__ void warmup( int *g_idata, int *g_odata, unsigned int n){unsigned int tid  = threadIdx.x;int *idata = g_idata + blockIdx.x * blockDim.x;unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;if (idx >= n) return;if (blockDim.x >= 1024 &&  tid < 512) idata[tid] += idata[tid+ 512];__syncthreads();if (blockDim.x >= 512 &&  tid < 256) idata[tid] += idata[tid+ 256];__syncthreads();if (blockDim.x >= 256 &&  tid < 128) idata[tid] += idata[tid+ 128];__syncthreads();if (blockDim.x >= 128 &&  tid < 64) idata[tid] += idata[tid+ 64];__syncthreads();if (tid < 32){volatile int *vmem  = idata;vmem[tid] += vmem[tid + 32];vmem[tid] += vmem[tid + 16];vmem[tid] += vmem[tid +  8];vmem[tid] += vmem[tid +  4];vmem[tid] += vmem[tid +  2];vmem[tid] += vmem[tid +  1];}if  (tid == 0){ g_odata[blockIdx.x] = idata[0];}
}__global__ void reduceGmem( int *g_idata, int *g_odata, unsigned int n){unsigned int tid  = threadIdx.x;int *idata = g_idata + blockIdx.x * blockDim.x;unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;if (idx >= n) return;if (blockDim.x >= 1024 &&  tid < 512) idata[tid] += idata[tid+ 512];__syncthreads();if (blockDim.x >= 512 &&  tid < 256) idata[tid] += idata[tid+ 256];__syncthreads();if (blockDim.x >= 256 &&  tid < 128) idata[tid] += idata[tid+ 128];__syncthreads();if (blockDim.x >= 128 &&  tid < 64) idata[tid] += idata[tid+ 64];__syncthreads();if (tid < 32){volatile int *vmem  = idata;vmem[tid] += vmem[tid + 32];vmem[tid] += vmem[tid + 16];vmem[tid] += vmem[tid +  8];vmem[tid] += vmem[tid +  4];vmem[tid] += vmem[tid +  2];vmem[tid] += vmem[tid +  1];}if  (tid == 0){ g_odata[blockIdx.x] = idata[0];}
}__global__ void reduceSmem(int *g_idata, int *g_odata, unsigned int n){__shared__ int smem[DIM];unsigned int tid  = threadIdx.x;// convert global data pointer to local pointerint *idata = g_idata + blockIdx.x * blockDim.x;unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;if (idx >= n) return;//set to smem by each threadssmem[tid] = idata[tid];__syncthreads();if (blockDim.x >= 1024 &&  tid < 512) smem[tid] += smem[tid+ 512];__syncthreads();if (blockDim.x >= 512 &&  tid < 256) smem[tid] += smem[tid+ 256];__syncthreads();if (blockDim.x >= 256 &&  tid < 128) smem[tid] += smem[tid+ 128];__syncthreads();if (blockDim.x >= 128 &&  tid < 64) smem[tid] += smem[tid+ 64];__syncthreads();if (tid < 32){volatile int *vsmem  = smem;vsmem[tid] += vsmem[tid + 32];vsmem[tid] += vsmem[tid + 16];vsmem[tid] += vsmem[tid +  8];vsmem[tid] += vsmem[tid +  4];vsmem[tid] += vsmem[tid +  2];vsmem[tid] += vsmem[tid +  1];}if  (tid == 0){ g_odata[blockIdx.x] = smem[0];}
}int main(int argc , char **argv)
{printf("%s starting\n", argv[0]);int dev = 0;cudaDeviceProp deviceprop;CHECK(cudaGetDeviceProperties(&deviceprop,dev));printf("Using Device %d : %s\n", dev, deviceprop.name);int size = 1 << 24;int blocksize = 512;if (argc > 1){blocksize = atoi(argv[1]);}dim3 block(DIM, 1);  // 1ddim3 grid ((size + block.x - 1) / block.x, 1);size_t nBytes = size  * sizeof(int);int * h_idata = (int*) malloc(nBytes);int * h_odata = (int*) malloc( grid.x * sizeof(int));  //you duoshao ge blockint * temp = (int*) malloc(nBytes);//initial the arrayfor (int i = 0 ; i < size;i++){h_idata[i] = (int)(rand() & 0xff);}int sum = 0;for (int i = 0 ; i < size;i++){sum += h_idata[i];}printf("sum value is : %d\n", sum);memcpy(temp, h_idata, nBytes);int gpu_sum = 0;int *d_idata = NULL;int *d_odata = NULL;cudaMalloc((void**)&d_idata, nBytes);cudaMalloc((void**)&d_odata, grid.x * sizeof(int));//cpu sumTimer timer;timer.start();int cpu_sum = recursiveReduce(temp, size);timer.stop();float elapsedTime = timer.elapsedms();printf("cpu reduce time: %f,  sum: %d\n", elapsedTime, cpu_sum);//gpu sumcudaMemcpy(d_idata, h_idata, nBytes, cudaMemcpyHostToDevice);cudaDeviceSynchronize();timer.start();warmup<<<grid.x, block>>>(d_idata, d_odata, size);cudaDeviceSynchronize(); timer.stop();float elapsedTime1 = timer.elapsedms();cudaMemcpy(h_odata, d_odata, grid.x * sizeof(int),cudaMemcpyDeviceToHost);gpu_sum = 0;for (int i = 0; i < grid.x; i ++){gpu_sum += h_odata[i];}printf("warm up reduce time: %f,  sum: %d\n", elapsedTime1, gpu_sum);//gpu sumcudaMemcpy(d_idata, h_idata, nBytes, cudaMemcpyHostToDevice);cudaDeviceSynchronize();timer.start();reduceGmem<<<grid.x, block>>>(d_idata, d_odata, size);cudaDeviceSynchronize(); timer.stop();elapsedTime1 = timer.elapsedms();cudaMemcpy(h_odata, d_odata, grid.x * sizeof(int),cudaMemcpyDeviceToHost);gpu_sum = 0;for (int i = 0; i < grid.x ; i ++){gpu_sum += h_odata[i];}printf("reduceGmem gpu reduce time: %f,  sum: %d, gird ,block (%d %d)\n", elapsedTime1, gpu_sum, grid.x , block.x);//gpu sumcudaMemcpy(d_idata, h_idata, nBytes, cudaMemcpyHostToDevice);cudaDeviceSynchronize();timer.start();reduceSmem<<<grid.x, block>>>(d_idata, d_odata, size);cudaDeviceSynchronize(); timer.stop();elapsedTime1 = timer.elapsedms();cudaMemcpy(h_odata, d_odata, grid.x * sizeof(int),cudaMemcpyDeviceToHost);gpu_sum = 0;for (int i = 0; i < grid.x ; i ++){gpu_sum += h_odata[i];}printf("reduceSmem gpu reduce time: %f,  sum: %d, gird ,block (%d %d)\n", elapsedTime1, gpu_sum, grid.x , block.x);cudaFree(d_idata);cudaFree(d_odata);cudaDeviceReset();free(h_idata);free(h_odata);free(temp);return 0;
}

通过nsys profile 程序:
nsys profile --stats=true reduce.exe
输出:

Time (%)  Total Time (ns)  Instances  Avg (ns)  Med (ns)  Min (ns)  Max (ns)  StdDev (ns)                   Name--------  ---------------  ---------  --------  --------  --------  --------  -----------  --------------------------------------39.8           134721          1  134721.0  134721.0    134721    134721          0.0  warmup(int *, int *, unsigned int)38.0           128385          1  128385.0  128385.0    128385    128385          0.0  reduceGmem(int *, int *, unsigned int)22.2            75040          1   75040.0   75040.0     75040     75040          0.0  reduceSmem(int *, int *, unsigned int)

5.3.2 展开

展开的核函数以及调用:


__global__ void reduceSmemUnroll(int *g_idata, int *g_odata, unsigned int n){__shared__ int smem[DIM];unsigned int tid  = threadIdx.x;// convert global data pointer to local pointerint *idata = g_idata + blockIdx.x * blockDim.x;unsigned int idx = blockIdx.x * blockDim.x * 4 + threadIdx.x;//unrolling 4 blocksint tmpSum = 0;if (idx + 3 * blockDim.x <= n){int a1 = g_idata[idx];int a2 = g_idata[idx + blockDim.x];int a3 = g_idata[idx + 2 * blockDim.x];int a4 = g_idata[idx + 3 * blockDim.x];tmpSum = a1 + a2 + a3 + a4;}//set to smem by each threadssmem[tid] = tmpSum;__syncthreads();if (blockDim.x >= 1024 &&  tid < 512) smem[tid] += smem[tid+ 512];__syncthreads();if (blockDim.x >= 512 &&  tid < 256) smem[tid] += smem[tid+ 256];__syncthreads();if (blockDim.x >= 256 &&  tid < 128) smem[tid] += smem[tid+ 128];__syncthreads();if (blockDim.x >= 128 &&  tid < 64) smem[tid] += smem[tid+ 64];__syncthreads();if (tid < 32){volatile int *vsmem  = smem;vsmem[tid] += vsmem[tid + 32];vsmem[tid] += vsmem[tid + 16];vsmem[tid] += vsmem[tid +  8];vsmem[tid] += vsmem[tid +  4];vsmem[tid] += vsmem[tid +  2];vsmem[tid] += vsmem[tid +  1];}if  (tid == 0){ g_odata[blockIdx.x] = smem[0];}
}// 调用
cudaMemcpy(d_idata, h_idata, nBytes, cudaMemcpyHostToDevice);cudaDeviceSynchronize();timer.start();reduceSmemUnroll<<<grid.x /4 , block>>>(d_idata, d_odata, size);cudaDeviceSynchronize(); timer.stop();elapsedTime1 = timer.elapsedms();cudaMemcpy(h_odata, d_odata, grid.x /4 * sizeof(int),cudaMemcpyDeviceToHost);gpu_sum = 0;for (int i = 0; i < grid.x / 4 ; i ++){gpu_sum += h_odata[i];}printf("reduceSmemUnroll gpu reduce time: %f,  sum: %d, gird ,block (%d %d)\n", elapsedTime1, gpu_sum, grid.x / 4, block.x);

nsys输出:

Time (%)  Total Time (ns)  Instances  Avg (ns)  Med (ns)  Min (ns)  Max (ns)  StdDev (ns)                      Name--------  ---------------  ---------  --------  --------  --------  --------  -----------  --------------------------------------------34.6           135329          1  135329.0  135329.0    135329    135329          0.0  warmup(int *, int *, unsigned int)33.0           129056          1  129056.0  129056.0    129056    129056          0.0  reduceGmem(int *, int *, unsigned int)      25.6            99968          1   99968.0   99968.0     99968     99968          0.0  reduceSmem(int *, int *, unsigned int)6.7            26335          1   26335.0   26335.0     26335     26335          0.0  reduceSmemUnroll(int *, int *, unsigned int)

5.3.3 动态共享内存

//动态声明
extern __shared__ int smem[];//调用
reduceSmemUnrollDyn<<<grid.x /4 , block, DIM * sizeof(int)>>>(d_idata, d_odata, size);

发现用动态分配共享内存实现的核函数和用静态分配共享内存实现的核函数之间没有显著的差异。

Time (%)  Total Time (ns)  Instances  Avg (ns)  Med (ns)  Min (ns)  Max (ns)  StdDev (ns)                       Name--------  ---------------  ---------  --------  --------  --------  --------  -----------  -----------------------------------------------35.2           135009          1  135009.0  135009.0    135009    135009          0.0  warmup(int *, int *, unsigned int)33.5           128576          1  128576.0  128576.0    128576    128576          0.0  reduceGmem(int *, int *, unsigned int)19.5            74753          1   74753.0   74753.0     74753     74753          0.0  reduceSmem(int *, int *, unsigned int)5.9            22752          1   22752.0   22752.0     22752     22752          0.0  reduceSmemUnroll(int *, int *, unsigned int)5.9            22752          1   22752.0   22752.0     22752     22752          0.0  reduceSmemUnrollDyn(int *, int *, unsigned int)
http://www.dtcms.com/wzjs/123407.html

相关文章:

  • 企业网站主页设计模板淘宝店铺怎么引流推广
  • 17Z一起做网站广州站百度电脑版官网入口
  • ai怎么做网站用海报网站黄页推广软件
  • 信息发布网站推广技巧如何注册网站平台
  • 查工程项目的网站江西优化中心
  • 网站建设方案选公司简述什么是网络营销
  • 网站关键字选择标准免费的十大免费货源网站
  • 开源门户网站建设方案关键词推广排名
  • 官方网站制作公司微指数
  • 网站logoPS怎么做百度竞价排名什么意思
  • 做网站宣传语快速排名优化推广价格
  • 网站设计中国内优秀企业网站欣赏营销渠道策略
  • 网站建设sem推广策划方案范文
  • 竞价网站制作网站seo是啥
  • 医疗网站不备案seo外链推广工具下载
  • 青羊区网站建设公司推广普通话的宣传语
  • WordPress阿里oss福州seo技巧培训
  • 北京公司网站制作要多少钱百度学术官网论文查重免费
  • 重庆网络问政平台合肥seo搜索优化
  • 深圳 网站建设培训百度官方免费下载
  • 小型网站有哪些如何建立自己的网络销售
  • 微信做单页的网站郑州网站建设优化
  • 百度搜索推广技巧整站优化快速排名
  • 武汉光谷职业学院站长工具seo排名查询
  • 用什么网站可以做河北软文搜索引擎推广公司
  • 上海松江区做网站公司网站查询域名
  • 溧阳城乡建设局网站2024年新冠疫情最新消息今天
  • 安阳市住房和城乡建设厅网站韩国比分预测
  • 哪类型网站容易做看广告赚钱
  • 哪些网站是用响应式布局做的网络营销怎么做?