当前位置: 首页 > wzjs >正文

代做安装预算的网站seo推广思路

代做安装预算的网站,seo推广思路,上海外贸网站seo,公司网站开发毕业设计来自B站AIGC科技官的"vLLM简介"视频截图 0. 引言1. vLLM简介2. vLLM启动日志解析3. vLLM压力测试4.vLLM分布式推理 0. 引言 这篇文章主要记录了B站AIGC科技官的"vLLM简介"视频截图。 1. vLLM简介 笔记 From Up主: KV Cache的大小与序列长度的…

来自B站AIGC科技官的"vLLM简介"视频截图

  • 0. 引言
  • 1. vLLM简介
  • 2. vLLM启动日志解析
  • 3. vLLM压力测试
  • 4.vLLM分布式推理

0. 引言

这篇文章主要记录了B站AIGC科技官的"vLLM简介"视频截图。

1. vLLM简介

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
笔记 From Up主:

  • KV Cache的大小与序列长度的大小是成正比的

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2. vLLM启动日志解析

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3. vLLM压力测试

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
我本机测试的示例代码,

import requests
import time# 接口配置(根据实际部署调整)
API_URL = "http://192.168.31.15:8000/v1/completions"
MODEL_NAME = "gpt-4o"  # 与启动命令的 --served-model-name 一致
HEADERS = {"Content-Type": "application/json", "Authorization": "Bearer sk-123456"}def test_token_rate(prompt: str, max_tokens: int = 512):"""测试单次请求的 Token 速率"""payload = {"model": "gpt-4o","prompt": prompt,"stream": True,  # 启用流式响应以统计 Token 延迟"max_tokens": max_tokens,"temperature": 0.7}start_time = time.perf_counter()first_token_received = Falsetoken_count = 0# 发送流式请求response = requests.post(API_URL, json=payload, headers=HEADERS, stream=True)for chunk in response.iter_lines():if chunk:chunk_str = chunk.decode("utf-8").strip()if chunk_str.startswith("data: "):# 统计首 Token 到达时间if not first_token_received:first_token_time = time.perf_counter()first_token_received = True# 累计生成 Token 数量token_count += 1end_time = time.perf_counter()return {"total_time": end_time - start_time,"first_token_latency": first_token_time - start_time if first_token_received else 0,"tokens_per_sec": token_count / (end_time - start_time)}# 测试执行
prompt = "假设你是唐朝诗人李白,请用七言绝句描述一次雪夜独钓的场景"
result = test_token_rate(prompt)
print(f"首 Token 延迟: {result['first_token_latency']:.2f}s")
print(f"Token 速率: {result['tokens_per_sec']:.2f} tokens/s")

我本机测试的示例结果,

首 Token 延迟: 0.36s
Token 速率: 39.10 tokens/s

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

我本机测试的示例代码,

import requests
import time
from concurrent.futures import ThreadPoolExecutor, as_completed# 配置参数
API_URL = "http://192.168.31.15:8000/v1/completions"
MODEL_NAME = "gpt-4o"  # 与 vLLM 启动参数 --served-model-name 一致
CONCURRENCY = 10  # 并发请求数
MAX_TOKENS = 512  # 每个请求生成的最大 Token 数
TEST_PROMPT = "请用鲁迅的文学风格描写一次深夜咖啡馆的场景"
HEADERS = {"Content-Type": "application/json", "Authorization": "Bearer sk-123456"}def send_request(request_id: int):"""单个请求测试函数"""payload = {"model": "gpt-4o","prompt": TEST_PROMPT,"stream": True,"max_tokens": MAX_TOKENS,"temperature": 0.8}start_time = time.perf_counter()first_token_time = Nonetoken_count = 0try:response = requests.post(API_URL, json=payload, headers=HEADERS, stream=True)for chunk in response.iter_lines():if chunk:chunk_str = chunk.decode().strip()if chunk_str.startswith("data: "):if not first_token_time:first_token_time = time.perf_counter()token_count += 1except Exception as e:print(f"请求 {request_id} 失败: {str(e)}")return Noneend_time = time.perf_counter()return {"request_id": request_id,"total_time": end_time - start_time,"first_token_latency": first_token_time - start_time if first_token_time else 0,"tokens": token_count}def run_concurrent_test():"""执行并发测试"""results = []with ThreadPoolExecutor(max_workers=CONCURRENCY) as executor:futures = {executor.submit(send_request, i): i for i in range(CONCURRENCY)}for future in as_completed(futures):result = future.result()if result:results.append(result)# 统计结果total_tokens = sum(r["tokens"] for r in results)total_time = max(r["total_time"] for r in results)  # 取最长耗时作为总时间avg_first_latency = sum(r["first_token_latency"] for r in results) / len(results)print(f"\n测试报告: ")print(f"并发请求数: {CONCURRENCY}")print(f"总生成 Token 数: {total_tokens}")print(f"平均首 Token 延迟: {avg_first_latency:.2f}s")print(f"系统吞吐量: {total_tokens / total_time:.2f} tokens/s")if __name__ == "__main__":run_concurrent_test()

我本机测试的示例结果,

测试报告: 
并发请求数: 10
总生成 Token 数: 5130
平均首 Token 延迟: 0.39s
系统吞吐量: 355.00 tokens/s

在这里插入图片描述
在这里插入图片描述

4.vLLM分布式推理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
未完待续!!!


原视频链接:B站AIGC科技官 vLLM简介

http://www.dtcms.com/wzjs/110317.html

相关文章:

  • 外国人做那个视频网站吗北京网站优化托管
  • asp简单网站开发郑州百度seo关键词
  • 网站建设备案查询各大网站收录查询
  • 怎么建设微信网站seo综合查询是什么
  • o2o网站开发价格如何进入网站
  • 做素材类的网站赚钱吗网站推广软件免费版
  • 南宁企业网站百度非企渠道开户
  • 用bootstrop制作一个网站百度信息流广告怎么投放
  • 网站建设项目立项登记 表如何制作一个自己的网站
  • 做律师事务所网站推广平台的方式有哪些
  • 天津哪里做网站广州seo托管
  • 深圳市建委网站seo网络推广师招聘
  • 个人建设网站制作新媒体口碑营销案例
  • 深圳外网站建设中国网络营销公司排名
  • 上海内贸网站建设seo公司运营
  • 钉钉企业注册流程百度seo综合查询
  • 网站建设服务费怎么做会计分录安卓手机优化大师官方下载
  • 网站建设保教电子商务营销模式有哪些
  • 南京做网站建设有哪些google下载手机版
  • 做猎头可以在哪些网站注册百度竞价怎么收费
  • 那些网站是用python做的360优化大师旧版本
  • 做自媒体在哪个网站好河北seo关键词排名优化
  • 随州网站建设价格广州百度seo公司
  • 网站建设工作下步打算什么是seo搜索
  • 网站梦打开又提示无法访问ip域名查询
  • 银行门户网站建设方案全国十大跨境电商公司排名
  • 怎样防止网站被黑企业网站建设价格
  • 宾爵手表官方网站做网站怎么优化
  • 淘宝优惠网站怎么做产品推广的渠道有哪些
  • 宣武门网站建设whois查询