当前位置: 首页 > wzjs >正文

镇江网站排名优化如何做网络宣传推广

镇江网站排名优化,如何做网络宣传推广,西安seo培训机构,网页设计服务方案1.状态转移方程和观测方程 状态转移方程 x k A x k − 1 B u k w k x_k A x_{k-1} Bu_k w_k xk​Axk−1​Buk​wk​ x k x_k xk​:k时刻的 状态向量,理论上的真实状态。 x k − 1 x_{k-1} xk−1​:k-1时刻的 状态向量,理论…

1.状态转移方程和观测方程

  • 状态转移方程
    x k = A x k − 1 + B u k + w k x_k = A x_{k-1} + Bu_k + w_k xk=Axk1+Buk+wk
    • x k x_k xk:k时刻的 状态向量,理论上的真实状态。
    • x k − 1 x_{k-1} xk1:k-1时刻的 状态向量,理论上的真实状态。
    • A A A:状态转移矩阵,用来决定下一时刻 状态向量状态空间 中的位置
    • B , u k B, u_k B,uk:控制矩阵 和 控制向量,用来对 状态向量 的位置进行修正或控制
    • w k w_k wk:过程噪声,模型本身引入的噪声,假定其符合 正态分布 ,数学期望(均值)为0,协方差矩阵为 Q Q Q
  • 观测方程
    z k = H x k + v k z_k = Hx_k + v_k zk=Hxk+vk
    • z k z_k zk:k时刻的观测值
    • H H H:观测矩阵,用于将 x k x_k xk 映射到观测空间
    • x k x_k xk:与 状态转移方程 中的 x k x_k xk 意义相同
    • v k v_k vk:测量噪声,测量不准确引入的噪声,假定其符合 正态分布 ,数学期望(均值)为0,协方差矩阵为 Q Q Q
  • 注意:
    • 在上述两个公式中 x k x_k xk,代表 k k k 时刻的 真实值,他是一个理想值,他假定预测模型和测量是完备的,误差也是已知的,但这在现实中是不可能的,卡尔曼滤波本身也是,不断通过 预测修正 两个阶段交替进行,使计算结果不断逼近真实结果 x k x_k xk 的一种方法。
    • 也可以这么理解卡尔曼滤波:模型估计测量 都有误差,误差的 概率分布 符合 正态分布(高斯分布),也就是 估计值测量值都不准,卡尔曼滤波就是在 估计值测量值 之间找到一个最优平衡点, 也就是找到 概率密度 最高的那个点,是一种最优估计的算法。

    如果误差都是已知的,那就直接修正了,那就等于没有误差,也不需要滤波,一个公式,直接就得到真结果了,那显然是不可能的。

2.卡尔曼增益 K k K_k Kk

  • 依据上述的状态方程和观测方程,可以得到下面两个公式:
    x ^ k − = F x ^ k − 1 + B u k \hat{\mathbf{x}}_k^-=\mathbf{F} \hat{\mathbf{x}}_{k-1}+\mathbf{B} \mathbf{u}_k x^k=Fx^k1+Buk
    z k = H x ^ k m e a x ^ k m e a = H − z k \mathbf{z}_k=\mathbf{H} \hat{\mathbf{x}}_{k_{mea}} \\ \hat{\mathbf{x}}_{k_{mea}} = H^-z_k zk=Hx^kmeax^kmea=Hzk

    • x ^ k − \hat{\mathbf{x}}_k^- x^k:当前状态的 先验估计 ,通过模型计算出来的值。
    • x ^ k m e a \hat{\mathbf{x}}_{k_{mea}} x^kmea 测量出来的值。

    此时, x ^ k − \hat{\mathbf{x}}_k^- x^k x ^ k m e a \hat{\mathbf{x}}_{k_{mea}} x^kmea 都是不准的,下一步就是从这两个不准的值中找到 最优估计

  • 假设存在一个系数 G G G,决定了我们应该相信 算出来的结果 还是 测出来的结果
    x ^ k = x ^ k − + G ( H − z k − x ^ k − ) \hat{\mathbf{x}}_k = \hat{\mathbf{x}}_k^- + G(H^-z_k - \hat{\mathbf{x}}_k^-) x^k=x^k+G(Hzkx^k)

    • 假设 G = 0 G = 0 G=0 , x ^ k = x ^ k − \hat{\mathbf{x}}_k = \hat{\mathbf{x}}_k^- x^k=x^k, 这时应该相信 算出来的结果
    • 假设 G = 1 G = 1 G=1, x ^ k = H − z k \hat{\mathbf{x}}_k = H^-z_k x^k=Hzk,这时更应该相信 测出来的结果

    x ^ k \hat{\mathbf{x}}_k x^k:后验估计,也就是当前时刻的最优估计值

  • 对这个公式进行一个变换, 是 G = k k H G = k_k H G=kkH, 带入上述公式得到
    x ^ k = x ^ k − + G ( H − z k − x ^ k − ) x ^ k = x ^ k − + k k H ( H − z k − x ^ k − ) − − − − − x ^ k = x ^ k − + k k ( z k − H x ^ k − ) \hat{\mathbf{x}}_k = \hat{\mathbf{x}}_k^- + G(H^-z_k - \hat{\mathbf{x}}_k^-) \\ \hat{\mathbf{x}}_k = \hat{\mathbf{x}}_k^- + k_k H(H^-z_k - \hat{\mathbf{x}}_k^-) \\ -----\\ \hat{\mathbf{x}}_k = \hat{\mathbf{x}}_k^- + k_k (z_k - H\hat{\mathbf{x}}_k^-) \\ x^k=x^k+G(Hzkx^k)x^k=x^k+kkH(Hzkx^k)x^k=x^k+kk(zkHx^k)

    • x ^ k \hat{\mathbf{x}}_k x^k:后验估计
    • 此时 K k K_k Kk 的取值范围是 0 − H − {0 - H^-} 0H
  • K k K_k Kk 就是 卡尔曼增益, 后续主要解决 k k k_k kk 的取值

3. 误差的协方差矩阵 P k P_k Pk

  • 每个时刻都会计算出一个 最优的估计(后验估计) x ^ k \hat{\mathbf{x}}_k x^k, 通常情况下,后验估计真实值 仍然存在误差,假设误差为 e k e_k ek :
    e k = x k − x ^ k / / 真实值 − 后验估计 e_k = x_k - \hat{\mathbf{x}}_k // 真实值 - 后验估计 ek=xkx^k//真实值后验估计
  • P k P_k Pk其实就是 e k e_k ek 的协方差矩阵
    P k = E [ e k e k T ] P_k = E[e_k {e_k}^T] Pk=E[ekekT]
  • 我们的目标是让误差 e k e_k ek 最小,也可以理解为方差最小,也可以说是协方差矩阵 P k P_k Pk 对角线之和最小,也就是协方差矩阵的 最小
  • 不难理解, P k P_k Pk也是一个理想值,无法直接获得,上面描述主要是帮助理解 P k P_k Pk 是什么,卡尔曼滤波中使用下面公式估计 P k P_k Pk 的值,下面是 P k P_k Pk 的先验估计公式
    P k − = F k P k − 1 F k ⊤ + Q k \mathbf{P}_k^-=\mathbf{F}_k\mathbf{P}_{k-1}\mathbf{F}_k^\top+\mathbf{Q}_k Pk=FkPk1Fk+Qk
    • Q k Q_k Qk估计误差 w k w_k wk(状态空间方程中的 w k w_k wk) 的协方差矩阵: Q k = E [ w k w k T ] Q_k = E[w_k {w_k}^T] Qk=E[wkwkT]
  • 卡尔曼增益 k k k_k kk的公式
    K k = P k − H T H P k − H T + R k K_k=\frac{P_{k}^{-}H^{T}}{HP_{k}^{-}H^{T}+R_k} Kk=HPkHT+RkPkHT
    • R k R_k Rk:测量误差 v k v_k vk 的协方差矩阵: R k = E [ v k v k T ] R_k = E[v_k {v_k}^T] Rk=E[vkvkT]
    • R k R_k Rk 比较大时,也就是分母比较大, K k K_k Kk 就会比较小,当 R k R_k Rk 足够大, K k K_k Kk 就会趋近于0。
    • R k R_k Rk 比较小时, K k ≈ P k − H T H P k − H T ≈ H − 1 K_k \approx {\frac{P_{k}^{-}H^{T}}{HP_{k}^{-}H^{T}}} \approx H^{-1} KkHPkHTPkHTH1

4. 卡尔曼滤波的递推流程

  • 卡尔曼滤波器的递推流程主要分为 预测校正 两步
  • 预测部分: 包括 状态的先验估计误差协方差矩阵的先验估计
    x ^ k − = F x ^ k − 1 + B u k / / 状态的先验估计 \hat{\mathbf{x}}_k^-=\mathbf{F} \hat{\mathbf{x}}_{k-1}+\mathbf{B} \mathbf{u}_k //状态的先验估计 x^k=Fx^k1+Buk//状态的先验估计
    P k − = F k P k − 1 F k ⊤ + Q k / / 误差协方差矩阵的先验估计 \mathbf{P}_k^-=\mathbf{F}_k\mathbf{P}_{k-1}\mathbf{F}_k^\top+\mathbf{Q}_k // 误差协方差矩阵的先验估计 Pk=FkPk1Fk+Qk//误差协方差矩阵的先验估计
  • 矫正部分包括:卡尔曼增益的计算, 后验估计(当前时刻的最优估计), 更新误差的协方差矩阵
    K k = P k − H T H P k − H T + R k / / 卡尔曼增益 K_k=\frac{P_{k}^{-}H^{T}}{HP_{k}^{-}H^{T}+R_k} //卡尔曼增益 Kk=HPkHT+RkPkHT//卡尔曼增益
    x ^ k = x ^ k − + k k ( z k − H x ^ k − ) / / 后验估计 ( 当前时刻的最优估计 ) \hat{\mathbf{x}}_k = \hat{\mathbf{x}}_k^- + k_k (z_k - H\hat{\mathbf{x}}_k^-) //后验估计(当前时刻的最优估计) x^k=x^k+kk(zkHx^k)//后验估计(当前时刻的最优估计)
    P k = ( I − K k H ) P k − / / 更新误差的协方差矩阵 ; I : 单位矩阵 P_{k}=(I-K_{k}H)P_{k}^{-} // 更新误差的协方差矩阵 ; I:单位矩阵 Pk=(IKkH)Pk//更新误差的协方差矩阵;I:单位矩阵
http://www.dtcms.com/wzjs/102574.html

相关文章:

  • 杭州网络公司排名百度关键词优化排名技巧
  • 兰州手机网站石家庄seo推广优化
  • 网站建设小公司生存百度小程序入口官网
  • 企业信息网太原seo外包平台
  • 做彩票网站制作搜索引擎公司排名
  • wordpress图片站主题实时军事热点
  • 成都房价seo推广薪资
  • 培训行业网站建设的重要性志鸿优化设计答案
  • 做网站备案需要多长时间长沙seo招聘
  • 做网络推广常用网站正版搜索引擎优化
  • 宁夏银川做网站的公司教育机构排名
  • 模板做的网站如何下载宁波网站制作优化服务公司
  • 阿里云服务器 做网站抖音seo关键词优化怎么做
  • 网站建设详细流程整合营销网络推广
  • 哪个网站可以免费做H5网络营销 长沙
  • ao主题wordpress百度竞价优化排名
  • 虎门做网站公司简述网络营销的特点及功能
  • 企业大型网站开发设计建站流程360优化大师下载官网
  • 外汇网站怎么做优化市场营销的对象有哪些
  • 深圳制作网站制作整合网络营销是什么
  • 如何做网站的seo中国万网
  • 上门服务做眉毛是哪个网站百度推广工作怎么样
  • 玉林做网站优化推广ui培训
  • 阿里巴巴网站是用什么技术做的潍坊在线制作网站
  • 网站 支持建设单位怎么进行网络营销
  • 旅游网站开发建设方案5118网站如何使用免费版
  • 网站建设的域名续费淄博网站推广
  • 长春建站塔山双喜百度seo公司一路火
  • 长春公司网站模板建站百度入口网址
  • 网站建设与app开发小网站关键词搜什么