当前位置: 首页 > news >正文

吴恩达深度学习复盘(1)神经网络与深度学习的发展

一、神经网络的起源与生物学动机

  1. 灵感来源
    神经网络的最初动机源于对生物大脑的模仿。20 世纪 50 年代,科学家试图通过软件模拟神经元的工作机制(如树突接收信号、轴突传递信号),构建类似人类大脑的信息处理系统。

  2. 生物神经元的简化模型
    人工神经网络采用数学模型简化生物神经元的行为:每个神经元接收输入(数字信号),通过加权求和与激活函数处理后输出。尽管这一模型远不及真实大脑复杂,但早期研究认为其可能复现智能行为。

二、神经网络的发展历程
  1. 20 世纪 50-80 年代:萌芽期

    • 1958 年,感知机(Perceptron)的提出标志着神经网络的诞生,但受限于硬件和理论,未能解决复杂问题。
    • 1980 年代,反向传播算法的提出推动了多层神经网络的发展,在手写数字识别等任务中取得突破(如邮政编码识别)。
  2. 1990 年代:低谷期

    • 传统神经网络因计算成本高、数据量不足及理论局限,逐渐被支持向量机(SVM)等方法取代。
  3. 2005 年后:复兴与深度学习崛起

    • 数据爆炸:互联网、移动设备普及带来海量数字化数据(如健康记录、在线行为)。
    • 计算能力提升:GPU(图形处理器)的应用大幅加速模型训练,尤其适用于深层神经网络。
    • 算法创新:深度神经网络(如 CNN、RNN)在语音识别(2010 年微软)、计算机视觉(2012 年 ImageNet 竞赛)等领域实现突破性进展。
三、深度学习的核心特点
  1. “深度” 的含义

    • 深度学习强调多层非线性特征提取。例如,CNN 通过卷积层、池化层逐步从像素中提取边缘、纹理到复杂物体特征。
  2. 与传统神经网络的区别

    • 深度网络层数更多(如 ResNet 可达千层),参数量更大,依赖大规模数据训练。
    • 名称变化:“深度学习” 更突出层级结构,淡化生物学隐喻,强调工程实用性。
四、应用领域的革命
  1. 语音识别

    • 深度学习使错误率下降 50% 以上,推动 Siri、Alexa 等智能助手普及。
  2. 计算机视觉

    • 2012 年 ImageNet 竞赛中,AlexNet 准确率远超传统方法,开启图像分类、目标检测的新时代。
  3. 自然语言处理(NLP)

    • Transformer 模型(如 GPT 系列)实现文本生成、翻译等任务的突破,重塑人机交互方式。
  4. 其他领域

    • 医疗影像诊断、气候变化预测、个性化推荐(如 Netflix、亚马逊)等均依赖深度学习。
五、复兴的关键驱动力
  1. 数据量激增

    • 传统算法(如线性回归)在小数据下表现良好,但无法充分利用大数据的潜力。深度学习通过深层网络挖掘数据中的复杂模式。
  2. 硬件进步

    • GPU 并行计算能力比 CPU 快数十倍,支持训练更大规模的模型(如 GPT-4 拥有万亿参数)。
  3. 算法优化

    • 批量归一化、残差连接等技术缓解梯度消失问题,使训练深层网络成为可能。
六、生物学动机的淡化与未来
  1. 从模仿到工程化

    • 早期神经网络试图复制大脑机制,但现代研究更关注算法有效性。例如,反向传播与突触可塑性无直接关联。
  2. 神经科学的启示

    • 尽管当前模型与大脑差异显著(如离散符号处理 vs. 连续神经信号),神经科学的新发现(如脉冲神经网络)可能为未来算法提供灵感。
笔者总结

前几节课程没什么公式和概念。只是让学习者有个大概的印象,热下身。

人工神经网络(ANN)是模拟生物神经元结构的计算模型,通过多层节点和权重连接处理数据,早期受限于层数(通常 1-2 层隐含层)和数据规模,依赖人工设计特征。

深度学习则是 ANN 的子集,特指具有深层结构(数十至上百层)的神经网络,其核心突破在于通过层次化特征提取自动学习抽象特征,解决了传统 ANN 难以处理的复杂问题。

深度学习的兴起得益于三大驱动力:

数据爆炸(互联网、移动设备带来的海量数字化数据);

硬件进步(GPU/TPU 加速训练);

算法优化(ReLU 激活函数、残差连接等技术缓解梯度消失)。

典型应用从早期语音识别(如 2010 年微软的深度学习突破)扩展到计算机视觉(2012 年 ImageNet 竞赛)、自然语言处理(GPT 系列模型)等领域。与 ANN 相比,深度学习更依赖大规模数据和计算资源,但通过深层网络实现了从图像、文本到语音的端到端学习,彻底改变了机器学习的应用范式。

神经网络从模仿生物大脑的尝试,演变为基于工程原理的强大工具,其复兴得益于数据、硬件与算法的协同进步。未来,随着神经科学和计算技术的突破,神经网络可能进一步逼近人类智能的边界,同时保持其作为通用人工智能基石的地位。

http://www.dtcms.com/a/99460.html

相关文章:

  • 什么是UI自动化测试?什么项目适合做UI自动化测试?
  • 编程考古-Borland JBuilder:一场关于Java灵魂的战争与救赎
  • Android 设计模式之适配器模式
  • 智能路由系统-信息泄露漏洞挖掘
  • 简单使用LlamaIndex实现RAG
  • (四)GTM_TOM模块定时器中断应用
  • 基于Python深度学习的鲨鱼识别分类系统
  • 垃圾回收机制的几种实现机制简介
  • 【差分】详解一维前缀和和差分问题
  • Java高级JVM知识点记录,内存结构,垃圾回收,类文件结构,类加载器
  • 无人机进行航空数据收集对于分析道路状况非常有用-使用无人机勘测高速公路而不阻碍交通-
  • BurpSuit抓包失败-基础配置
  • 用war解压缩.7zip文件解压缩正在进行但是结束后文件消失了
  • 计算机二级考前急救(Word篇)
  • python:将mp4视频快进播放,并保存新的视频
  • OpenHarmony子系统开发 - 安全(二)
  • Redisson分布式锁深度解析:原理与实现机制
  • STM32F4单片机SDIO驱动SD卡
  • NLP语言模型训练里的特殊向量
  • Spring Boot整合Kafka详细指南(JDK 1.8)
  • Flutter环境搭建
  • JDK1.8和Maven、Git安装教程自用成功
  • 【MySQL基础】函数之字符串函数详解
  • JVM Java类加载 isInstance instanceof 的区别
  • 洛谷题单1-P5703 【深基2.例5】苹果采购-python-流程图重构
  • JDBC的详细使用
  • 【零基础入门unity游戏开发——2D篇】2D物理关节 —— Joint2D相关组件
  • [Lc4_dfs] 解数独 | 单词搜索
  • PyQt6实例_批量下载pdf工具_界面开发
  • MDK中结构体的对齐、位域、配合联合体等用法说明