基于类型属性的重载
算法重载
在一个泛型算法中引入更为特化的变体,这种设计和优化方式称为算法特化。之所以需要算法特化,原因有二:
- 针对特定类型使用更加合理的实现,对于const char *,less的第二个实现更加合理
template <typename T>
bool less(const T a, const T b) {
return a < b;
}
template <>
bool less(const char *a, const char *b) {
return strcmp(a, b) < 0;
}
- 针对特定类型使用执行效率更高的实现,对于vector<int>,swap的第二个实现更加合理
template <typename T>
void swap(T &a, T &b) {
T temp(a);
a = b;
b = temp;
}
template <typename T>
void swap(std::vector<T> &a, std::vector<T> &b) {
a.swap(b);
}
基于函数模板的部分排序规则,上述两个例子,都是第二种函数模板为更加特化的模板。存在更为特化的函数模板时,编译器会优先选择这类函数模板,只有其不适用时,编译器才会回退到更为泛化的版本。
但是,并非所有概念上更为特化的算法变体,都可以直接转换成提供了正确部分排序行为的函数模板,例如下面的例子:
#include <iostream>
#include <iterator>
#include <vector>
template <typename random_access_iter, typename distance_type>
void advance_iter(random_access_iter &iter, distance_type distance) {
iter += distance;
}
template <typename input_iter, typename distance_type>
void advance_iter(input_iter &iter, distance_type distance) {
while (distance > 0) {
++iter;
--distance;
}
}
int main(int argc, char **argv) {
std::vector<int> vec {0, 1, 2, 3, 4, 5, 6};
auto iter = vec.begin();
advance_iter(iter, 2);
std::cout << *iter << std::endl;
return 0;
}
编译其无法通过模板参数名称来区分不同的模板函数,所以上面的代码无法通过编译,报错如下:
iter_specialazition.cpp:11:6: error: redefinition of 'advance_iter'
void advance_iter(input_iter &iter, distance_type distance) {
^
iter_specialazition.cpp:6:6: note: previous definition is here
void advance_iter(random_access_iter &iter, distance_type distance) {
^
iter_specialazition.cpp:21:5: error: no matching function for call to 'advance_iter'
advance_iter(iter, 2);
^~~~~~~~~~~~
iter_specialazition.cpp:11:6: note: candidate template ignored: substitution failure [with input_iter = std::__wrap_iter<int *>, distance_type = int]
void advance_iter(input_iter &iter, distance_type distance) {
因此,我们需要用到其他技术,更好的实现算法特化。
标签派发
标签派发并非一种C++语法特性,而是基于萃取的一种设计模式。具体方式:用一个唯一的,可以区分特定变体的类型,来标记不同算法的实现。可以使用该种设计模式,解决上节遇到的问题,源码如下:
#include <iostream>
#include <iterator>
#include <vector>
template <typename iterator_type, typename distance_type>
void advance_iter_impl(iterator_type &iter, distance_type distance, std::random_access_iterator_tag) {
std::cout << "std::random_access_iterator_tag" << std::endl;
iter += distance;
}
template <typename iterator_type, typename distance_type>
void advance_iter_impl(iterator_type &iter, distance_type distance, std::input_iterator_tag) {
std::cout << "std::input_iterator_tag" << std::endl;
while (distance > 0) {
++iter;
--distance;
}
}
template <typename iterator_type, typename distance_type>
void advance_iter(iterator_type &iter, distance_type distance) {
advance_iter_impl(iter, distance, typename std::iterator_traits<iterator_type>::iterator_category());
}
int main(int argc, char **argv) {
std::vector<int> vec {0, 1, 2, 3, 4, 5, 6};
auto iter = vec.begin();
advance_iter(iter, 2);
std::cout << *iter << std::endl;
return 0;
}
Enable/Disable 函数模板
提供多种特化版本
算法特化需要 可以 基于模板参数的属性 进行选择的,不同的函数模板。从c++11开始提供的std::enable_if恰能接此重任。前面提到的问题,还可以通过enable_if实现,如下:
#include <iostream>
#include <iterator>
#include <vector>
template <typename iterator_type>
constexpr bool is_random_access_iterator = std::is_convertible<typename std::iterator_traits<iterator_type>::iterator_category, std::random_access_iterator_tag>::value;
template <typename iterator_type, typename distance_type>
typename std::enable_if<is_random_access_iterator<iterator_type>>::type
advance_iter(iterator_type &iter, distance_type distance) {
std::cout << "std::random_access_iterator_tag" << std::endl;
iter += distance;
}
template <typename iterator_type, typename distance_type>
typename std::enable_if<!is_random_access_iterator<iterator_type>>::type
advance_iter(iterator_type &iter, distance_type distance) {
std::cout << "std::input_iterator_tag" << std::endl;
while (distance > 0) {
++iter;
--distance;
}
}
int main(int argc, char **argv) {
std::vector<int> vec {0, 1, 2, 3, 4, 5, 6};
auto iter = vec.begin();
advance_iter(iter, 2);
std::cout << *iter << std::endl;
return 0;
}
对于上述函数模板,我们使用了相同模式的enable_if,只是判断条件相反,因此,进行推断时,任何类型都不会产生二义性。大家可能会有疑问:可不可以将enable_if作为模板参数,如同下面的实现:
template <typename iterator_type>
constexpr bool is_random_access_iterator = std::is_convertible<typename std::iterator_traits<iterator_type>::iterator_category, std::random_access_iterator_tag>::value;
template <typename iterator_type, typename distance_type, typename = typename std::enable_if<is_random_access_iterator<iterator_type>>::type>
void advance_iter(iterator_type &iter, distance_type distance) {
std::cout << "std::random_access_iterator_tag" << std::endl;
iter += distance;
}
template <typename iterator_type, typename distance_type, typename = typename std::enable_if<!is_random_access_iterator<iterator_type>>::type>
void advance_iter(iterator_type &iter, distance_type distance) {
std::cout << "std::input_iterator_tag" << std::endl;
while (distance > 0) {
++iter;
--distance;
}
}
答案是否定的,上面的源码无法通过编译,报错如下:
function_enable3.cpp:14:70: error: template parameter redefines default argument
template <typename iterator_type, typename distance_type, typename = typename std::enable_if<!is_random_access_iterator<iterator_type>>::type>
^
function_enable3.cpp:8:70: note: previous default template argument defined here
template <typename iterator_type, typename distance_type, typename = typename std::enable_if<is_random_access_iterator<iterator_type>>::type>
^
function_enable3.cpp:15:6: error: redefinition of 'advance_iter'
void advance_iter(iterator_type &iter, distance_type distance) {
^
function_enable3.cpp:9:6: note: previous definition is here
void advance_iter(iterator_type &iter, distance_type distance) {
^
function_enable3.cpp:26:5: error: no matching function for call to 'advance_iter'
advance_iter(iter, 2);
^~~~~~~~~~~~
function_enable3.cpp:15:6: note: candidate template ignored: requirement '!is_random_access_iterator<std::__wrap_iter<int *>>' was not satisfied [with iterator_type = std::__wrap_iter<int *>, distance_type = int]
void advance_iter(iterator_type &iter, distance_type distance) {
^
报错原因和解决方案大家可以参考下一节 EnableIf 所之何处。现在我们需要支持距离参数为负数的情况,加入一个新的算法变体,应该如何实现?我们可以很快写出下面的代码:
//...
template <typename iterator_type>
constexpr bool is_bidirectional_iterator = std::is_convertible<typename std::iterator_traits<iterator_type>::iterator_category, std::bidirectional_iterator_tag>::value;
//...
template <typename iterator_type, typename distance_type>
typename std::enable_if<is_bidirectional_iterator<iterator_type>>::type
advance_iter(iterator_type &iter, distance_type distance) {
std::cout << "std::bidirectional_iterator_tag" << std::endl;
if (distance > 0) {
for ( ; distance > 0; ++iter, --distance) {}
}
else {
for ( ; distance < 0; --iter, ++distance) {}
}
}
//...
然而却无法编译通过,报错如下:
function_enable2.cpp:43:5: error: call to 'advance_iter' is ambiguous
advance_iter(iter, 2);
^~~~~~~~~~~~
function_enable2.cpp:13:1: note: candidate function [with iterator_type = std::__wrap_iter<int *>, distance_type = int]
advance_iter(iterator_type &iter, distance_type distance) {
^
function_enable2.cpp:30:1: note: candidate function [with iterator_type = std::__wrap_iter<int *>, distance_type = int]
advance_iter(iterator_type &iter, distance_type distance) {
^
很明显,在进行推断时出现了歧义,编译器不知道使用哪个版本的advance_iter。正确的做法是:通过让每一个函数模板的 EnableIf 条件与其它所有函数模板的条件互相排斥,可以保证对于 一组参数,最多只有一个函数模板可以在模板参数推断中胜出。详细代码如下:
//...
template <typename iterator_type>
constexpr bool is_random_access_iterator = std::is_convertible<typename std::iterator_traits<iterator_type>::iterator_category, std::random_access_iterator_tag>::value;
template <typename iterator_type>
constexpr bool is_bidirectional_iterator = std::is_convertible<typename std::iterator_traits<iterator_type>::iterator_category, std::bidirectional_iterator_tag>::value;
template <typename iterator_type, typename distance_type>
typename std::enable_if<is_random_access_iterator<iterator_type>>::type
advance_iter(iterator_type &iter, distance_type distance) {
std::cout << "std::random_access_iterator_tag" << std::endl;
iter += distance;
}
template <typename iterator_type, typename distance_type>
typename std::enable_if<!is_bidirectional_iterator<iterator_type>>::type
advance_iter(iterator_type &iter, distance_type distance) {
std::cout << "std::input_iterator_tag" << std::endl;
while (distance > 0) {
++iter;
--distance;
}
}
template <typename iterator_type, typename distance_type>
typename std::enable_if<is_bidirectional_iterator<iterator_type> && !is_random_access_iterator<iterator_type>>::type
advance_iter(iterator_type &iter, distance_type distance) {
std::cout << "std::bidirectional_iterator_tag" << std::endl;
if (distance > 0) {
for ( ; distance > 0; ++iter, --distance) {}
}
else {
for ( ; distance < 0; --iter, ++distance) {}
}
}
//...
EnableIf 所之何处
std::enable_if不仅可以用于函数模板的返回类型,还可以用于没有返回类型的构造函数模板,类型转换模板,用户对模板参数进行限制。使用方法是增加一个匿名默认模板参数,如下:
#include <type_traits>
#include <iostream>
#include <string>
#include <vector>
#include <map>
struct point4d {
double x;
double y;
double z;
double w;
};
struct point3d {
double x;
double y;
double z;
};
struct point2d {
double x;
double y;
operator point3d() { return point3d(); }
};
template <typename T>
class line
{
public:
line(void) : m_points() {}
template <typename U, typename = typename std::enable_if<std::is_same<typename U::value_type, T>::value>::type>
line(const U &arg) {}
template <typename V, typename = typename std::enable_if<std::is_convertible<T, V>::value>::type>
operator line<V>() const { return line<V>(); }
private:
std::vector<T> m_points;
};
int main(int arc, char ** argv)
{
std::vector<point2d> pt2_vect;
line<point2d> line1(pt2_vect);
//std::map<int, point2d>的value_type为std::pair<int, point2d>,不符合要求,失败
//std::map<int, point2d> pt2_map;
//line<point2d> line2(pt2_map);
line<point3d> line3 = line1;
//point2d不能转换为point2d,不符合要,失败
//line<point4d> line4 = line1;
return 0;
}
如果想添加一个如下的构造函数模板,编译会报错“constructor cannot be redeclared”。
template <typename U, typename = typename std::enable_if<std::is_same<U, std::map<int, T>>::value>::type>
line(const U &arg) {}
报错的原因是这两个模板唯一的区别是默认模板参数,但是在判断两个模板是否相同的时候却又不会考虑默认模板参数,解决方案是再增加一个默认的模板参数,如下:
template <typename U, typename = typename std::enable_if<std::is_same<U, std::map<int, T>>::value>::type, typename = void>
line(const U &arg) {}
Concepts
使用concept,比enable_if更加简洁,直接(c++20以后),源码如下:
#include <type_traits>
#include <iostream>
#include <cstring>
template <typename T>
concept fundamental = std::is_fundamental<T>::value && !std::is_void<T>::value && !std::is_null_pointer<T>::value;
template <typename T>
requires fundamental<T>
bool compare(const T a, const T b) {
std::cout << "fundamental" << std::endl;
return a < b;
}
template <typename T>
concept number_pointer = std::is_pointer<T>::value && !std::is_same<T, char *>::value;
template <typename T>
requires number_pointer<T>
bool compare(const T a, const T b) {
std::cout << "number_pointer" << std::endl;
return *a < *b;
}
template <typename T>
concept cstr = std::is_pointer<T>::value && std::is_same<T, char *>::value;
template <typename T>
requires cstr<T>
bool compare(const T a, const T b) {
std::cout << "cstr" << std::endl;
return strcmp(a, b) < 0;
}
int main(int argc, char **argv) {
int a = 10;
int b = 100;
compare(a, b);
int *pa = &a;
int *pb = &b;
compare(pa, pb);
char *str0 = (char *)"hello";
char *str1 = (char *)"world";
compare(str0, str1);
return 0;
}
类的特化
禁用/启用模板
通过enanble_if禁用/启用模板,可以实现类模板的重载,源码如下:
#include <type_traits>
#include <iostream>
template <typename T, typename = void>
struct compare {
bool operator()(const T x, const T y) { return x < y; }
constexpr static int value = 1;
};
template <typename T>
struct compare<T, typename std::enable_if<std::is_pointer<T>::value && !std::is_same<T, char *>::value>::type> {
bool operator()(const T x, const T y) { return *x < *y; }
constexpr static int value = 2;
};
template <typename T>
struct compare<T, typename std::enable_if<std::is_pointer<T>::value && std::is_same<T, char *>::value>::type> {
bool operator()(const T x, const T y) { return strcmp(x, y) < 0; }
constexpr static int value = 3;
};
int main(int argc, char **argv) {
std::cout << compare<int>::value << std::endl;
std::cout << compare<int *>::value << std::endl;
std::cout << compare<char *>::value << std::endl;
return 0;
}
但是需要注意,偏特化模板类的条件参数必须能够彼此区分,像下面的实现,条件参数无法做到彼此区分:
template <typename T>
struct compare<T, typename std::enable_if<std::is_pointer<T>::value>::type> {
bool operator()(const T x, const T y) { return *x < *y; }
constexpr static int value = 2;
};
template <typename T>
struct compare<T, typename std::enable_if<std::is_pointer<T>::value && std::is_same<T, char *>::value>::type> {
bool operator()(const T x, const T y) { return strcmp(x, y) < 0; }
constexpr static int value = 3;
};
当模板参数类型为char*,enanble_if条件std::is_pointer<T>::value和std::is_pointer<T>::value && std::is_same<T, char *>::value都为true,编译器不知道该调用哪个模板,因此报出如下的错误:
class_enable.cpp:25:18: error: ambiguous partial specializations of 'compare<char *>'
std::cout << compare<char *>::value << std::endl;
^
class_enable.cpp:11:8: note: partial specialization matches [with T = char *]
struct compare<T, typename std::enable_if<std::is_pointer<T>::value>::type> {
^
class_enable.cpp:17:8: note: partial specialization matches [with T = char *]
struct compare<T, typename std::enable_if<std::is_pointer<T>::value && std::is_same<T, char *>::value>::type> {
解决方案,就是为第一个偏特化实现enable_if条件增加!std::is_same<T, char *>::value,这样两个偏特化模板彼此互斥,必定能够区分彼此。
下面的实现,虽然能够区分两个偏特化模板,但执行结果却不符合预期。
template <typename T>
struct compare<T, typename std::enable_if<std::is_pointer<T>::value>::type> {
bool operator()(const T x, const T y) { return *x < *y; }
constexpr static int value = 2;
};
template <typename T>
struct compare<T, typename std::enable_if<std::is_pointer<T>::value && std::is_same<T, char *>::value, T>::type> {
bool operator()(const T x, const T y) { return strcmp(x, y) < 0; }
constexpr static int value = 3;
};
为什么编译其选择了第一个偏特化类模板? 自己确实没有搞明白,欢迎知道的朋友留言
标签派发
同样的,标签派发也可以用于在不同的类模板特化之间做选择,下面是类模板使用标签派发的一个例子:
#include <type_traits>
#include <iostream>
struct integer_tag {};
struct integer_pointer_tag {};
struct str_pointer_tag {};
struct floating_tag{};
struct integer {
using tag = integer_tag;
int i = 0;
};
struct integer_pointer {
using tag = integer_pointer_tag;
int *pi = nullptr;
};
struct str_pointer {
using tag = str_pointer_tag;
char *pstr = nullptr;
};
struct floating {
using tag = floating_tag;
float f;
};
template <typename T, typename = typename T::tag>
struct compare;
template <typename T>
struct compare<T, integer_tag> {
bool operator()(const T x, const T y) {
std::cout << "integer" << std::endl;
return x.i < y.i;
}
};
template <typename T>
struct compare<T, integer_pointer_tag> {
bool operator()(const T x, const T y) {
std::cout << "integer ptr" << std::endl;
return *(x.pi) < *(y.pi);
}
};
template <typename T>
struct compare<T, str_pointer_tag> {
bool operator()(const T x, const T y) {
std::cout << "string ptr " << std::endl;
return strcmp(x.pstr, y.pstr) < 0;
}
};
template <typename T>
bool compare_(const T x, const T y) {
return compare<T>()(x, y);
}
int main(int argc, char **argv) {
integer a, b;
a.i = 10;
b.i = 5;
std::cout << (compare_(a, b) ? "true" : "false") << std::endl;
str_pointer str0, str1;
str0.pstr = (char *)"1";
str1.pstr = (char *)"2";
std::cout << (compare_(str0, str1) ? "true" : "false") << std::endl;
/*floating c, d;
c.f = 3.14;
d.f = 2.17;
std::cout << (compare_(c, d) ? "true" : "false") << std::endl;*/
return 0;
}
关于上面的例子,还有一种写法,如下:
#include <type_traits>
#include <iostream>
template <typename ...Types>
struct match_overloads;
template <>
struct match_overloads<> {
static void match(...);
};
template <typename T, typename ...Rest>
struct match_overloads<T, Rest...> : public match_overloads<Rest...> {
static T match(T);
using match_overloads<Rest...>::match;
};
template <typename T, typename ...Types>
struct best_match_in_set {
using type = decltype(match_overloads<Types...>::match(std::declval<T>()));
};
template <typename T, typename ...Types>
using best_match_in_set_t = typename best_match_in_set<T, Types...>::type;
struct integer_tag {};
struct integer_pointer_tag {};
struct str_pointer_tag {};
struct floating_tag{};
struct integer {
using tag = integer_tag;
int i = 0;
};
struct integer_pointer {
using tag = integer_pointer_tag;
int *pi = nullptr;
};
struct str_pointer {
using tag = str_pointer_tag;
char *pstr = nullptr;
};
struct floating {
using tag = floating_tag;
float f;
};
template <typename T, typename tag = best_match_in_set_t<typename T::tag, integer_tag, integer_pointer, str_pointer_tag>>
struct compare;
template <typename T>
struct compare<T, integer_tag> {
bool operator()(const T x, const T y) {
std::cout << "integer" << std::endl;
return x.i < y.i;
}
};
template <typename T>
struct compare<T, integer_pointer_tag> {
bool operator()(const T x, const T y) {
std::cout << "integer ptr" << std::endl;
return *(x.pi) < *(y.pi);
}
};
template <typename T>
struct compare<T, str_pointer_tag> {
bool operator()(const T x, const T y) {
std::cout << "string ptr " << std::endl;
return strcmp(x.pstr, y.pstr) < 0;
}
};
template <typename T>
bool compare_(const T x, const T y) {
return compare<T>()(x, y);
}
int main(int argc, char **argv) {
integer a, b;
a.i = 10;
b.i = 5;
std::cout << (compare_(a, b) ? "true" : "false") << std::endl;
str_pointer str0, str1;
str0.pstr = (char *)"1";
str1.pstr = (char *)"2";
std::cout << (compare_(str0, str1) ? "true" : "false") << std::endl;
/*floating c, d;
c.f = 3.14;
d.f = 2.17;
std::cout << (compare_(c, d) ? "true" : "false") << std::endl;*/
return 0;
}
两种实现能够实现标签派发,但新的实现能够显示的指出标签派发支持哪些tag。
实例化安全的模板
std::enable_if技术本质:只有满足模板参数满足某些条件,才可以使用某个模板或某个偏特化模板。
将模板用到的所有模板参数操作都使用enable_if进行条件判断,则模板的实例化永远不会失败,因为没有提供enable_if所需操作的模板参数会导致推断错误,而不会在可能会出错的情况下继续实例化。这一类模板被称为“实例化安全”的模板。
举个例子,实现一个函数,返回两个变量中较小的一个。毫无疑问,我们会实现一个函数模板,并且把变量类型定义为模板参数,以便支持各种类型。很明显,该函数模板中的模板参数要满足以下需求:
- 支持比较操作符<
- 比较操作符<的返回结果为bool值
我们先不限制这两点需求,实现函数,如下:
#include <type_traits>
template <typename T>
T min(T const &x, T const &y) {
if (y < x)
return y;
return x;
}
struct X1 {};
bool operator<(X1 const &, X1 const &) { return true; }
struct X2{};
bool operator<(X2, X2) { return true; }
struct X3{};
bool operator<(X3 &, X3 &) { return true; }
struct X4{};
struct X5{};
struct BoolConvertible {
operator bool() const { return true; }
};
BoolConvertible operator<(X5 const &, X5 const &) { return BoolConvertible(); }
struct X6{};
struct NotBoolConvertible {};
NotBoolConvertible operator<(X6 const &, X6 const &) { return NotBoolConvertible(); }
struct X7{};
struct BoolLike {
explicit operator bool() const { return true; }
};
BoolLike operator<(X7 const &, X7 const &) { return BoolLike(); }
int main(int argc, char **argv) {
min(X1(), X1());
min(X2(), X2());
min(X3(), X3());
min(X4(), X4());
min(X5(), X5());
min(X6(), X6());
min(X7(), X7());
return 0;
}
执行编译,编译器报错如下:
initial_safe_template.cpp:35:11: error: invalid operands to binary expression ('const X3' and 'const X3')
if (y < x)
~ ^ ~
initial_safe_template.cpp:71:5: note: in instantiation of function template specialization 'min<X3>' requested here
min(X3(), X3());
^
initial_safe_template.cpp:42:6: note: candidate function not viable: no known conversion from 'const X3' to 'const X1' for 1st argument
bool operator<(X1 const &, X1 const &) { return true; }
^
initial_safe_template.cpp:45:6: note: candidate function not viable: no known conversion from 'const X3' to 'X2' for 1st argument
bool operator<(X2, X2) { return true; }
^
initial_safe_template.cpp:48:6: note: candidate function not viable: 1st argument ('const X3') would lose const qualifier
bool operator<(X3 &, X3 &) { return true; }
^
initial_safe_template.cpp:56:17: note: candidate function not viable: no known conversion from 'const X3' to 'const X5' for 1st argument
BoolConvertible operator<(X5 const &, X5 const &) { return BoolConvertible(); }
^
initial_safe_template.cpp:60:20: note: candidate function not viable: no known conversion from 'const X3' to 'const X6' for 1st argument
NotBoolConvertible operator<(X6 const &, X6 const &) { return NotBoolConvertible(); }
^
initial_safe_template.cpp:66:10: note: candidate function not viable: no known conversion from 'const X3' to 'const X7' for 1st argument
BoolLike operator<(X7 const &, X7 const &) { return BoolLike(); }
^
initial_safe_template.cpp:35:11: error: invalid operands to binary expression ('const X4' and 'const X4')
if (y < x)
~ ^ ~
initial_safe_template.cpp:72:5: note: in instantiation of function template specialization 'min<X4>' requested here
min(X4(), X4());
^
initial_safe_template.cpp:42:6: note: candidate function not viable: no known conversion from 'const X4' to 'const X1' for 1st argument
bool operator<(X1 const &, X1 const &) { return true; }
^
initial_safe_template.cpp:45:6: note: candidate function not viable: no known conversion from 'const X4' to 'X2' for 1st argument
bool operator<(X2, X2) { return true; }
^
initial_safe_template.cpp:48:6: note: candidate function not viable: no known conversion from 'const X4' to 'X3 &' for 1st argument
bool operator<(X3 &, X3 &) { return true; }
^
initial_safe_template.cpp:56:17: note: candidate function not viable: no known conversion from 'const X4' to 'const X5' for 1st argument
BoolConvertible operator<(X5 const &, X5 const &) { return BoolConvertible(); }
^
initial_safe_template.cpp:60:20: note: candidate function not viable: no known conversion from 'const X4' to 'const X6' for 1st argument
NotBoolConvertible operator<(X6 const &, X6 const &) { return NotBoolConvertible(); }
^
initial_safe_template.cpp:66:10: note: candidate function not viable: no known conversion from 'const X4' to 'const X7' for 1st argument
BoolLike operator<(X7 const &, X7 const &) { return BoolLike(); }
^
initial_safe_template.cpp:35:9: error: value of type 'NotBoolConvertible' is not contextually convertible to 'bool'
if (y < x)
^~~~~
initial_safe_template.cpp:74:5: note: in instantiation of function template specialization 'min<X6>' requested here
min(X6(), X6());
^
3 errors generated.
然后,在使用enable_if对上述两点需求做出限制,新代码如下:
#include <type_traits>
template <typename T1, typename T2>
class has_less {
template <typename T>
struct identity;
template <typename U1, typename U2>
static std::true_type test(identity<decltype(std::declval<U1>() < std::declval<U2>())>*);
template <typename U1, typename U2>
static std::false_type test(...);
public:
static constexpr bool value = decltype(test<T1, T2>(nullptr))::value;
};
template <typename T1, typename T2, bool has_less>
struct less_result_impl {
using type = decltype(std::declval<T1>() < std::declval<T2>());
};
template <typename T1, typename T2>
struct less_result_impl<T1, T2, false> {};
template <typename T1, typename T2>
struct less_result_t : less_result_impl<T1, T2, has_less<T1,T2>::value> {};
template <typename T1, typename T2>
using less_result = typename less_result_t<T1, T2>::type;
template <typename T>
typename std::enable_if<std::is_convertible<less_result<T const &, T const &>, bool>::value, T const &>::type
min(T const &x, T const &y) {
if (y < x)
return y;
return x;
}
//......
编译后,代码报错如下:
initial_safe_template.cpp:71:5: error: no matching function for call to 'min'
min(X3(), X3());
^~~
initial_safe_template.cpp:34:1: note: candidate template ignored: substitution failure [with T = X3]: no type named 'type' in 'less_result_t<const X3 &, const X3 &>'
min(T const &x, T const &y) {
^
initial_safe_template.cpp:72:5: error: no matching function for call to 'min'
min(X4(), X4());
^~~
initial_safe_template.cpp:34:1: note: candidate template ignored: substitution failure [with T = X4]: no type named 'type' in 'less_result_t<const X4 &, const X4 &>'
min(T const &x, T const &y) {
^
initial_safe_template.cpp:74:5: error: no matching function for call to 'min'
min(X6(), X6());
^~~
initial_safe_template.cpp:34:1: note: candidate template ignored: requirement 'std::is_convertible<NotBoolConvertible, bool>::value' was not satisfied [with T = X6]
min(T const &x, T const &y) {
^
initial_safe_template.cpp:75:5: error: no matching function for call to 'min'
min(X7(), X7());
^~~
initial_safe_template.cpp:34:1: note: candidate template ignored: requirement 'std::is_convertible<BoolLike, bool>::value' was not satisfied [with T = X7]
min(T const &x, T const &y) {
^
4 errors generated.
相对于第一次的编译错误,第二次显然更加简洁直接。
关于类型X7需要特别说明一下,如果min是普通函数,即如下的定义:
X7 const & min(X7 const &x, X7 const &y) {
if (y < x)
return y;
return x;
}
min(X7(), X7())是可以通过编译的。由于BooLike到bool的转换必须是显示的,在某些情况下,比如控制语句(if,while,for 以及 do)的布尔型条件,内置的!,&&以及||运算符,还有三元运算符?:,这种转换是有效的(即显示向bool的转换是可以被隐式调用的),但enable_if指定的条件比我们实际需要的条件更加严格,认定这种转换无效,导致实例化失败。
为了解决 min()中这一由实例化安全带来的问题,我们需要一个可以判断某个类型是否是“语 境上可以转换成 bool”的萃取技术。新的min源码如下:
//......
template <typename T>
class is_contextual_bool {
template <typename U>
struct Identity;
template<typename U>
static std::true_type test(Identity<decltype(std::declval<U>()? 0 : 1)>*);
template<typename U>
static std::false_type test(...);
public:
static constexpr bool value = decltype(test<T>(nullptr))::value;
};
template <typename T>
typename std::enable_if<is_contextual_bool<less_result<T const &, T const &>>::value, T const &>::type
min(T const &x, T const &y) {
if (y < x)
return y;
return x;
}
//......